Xiaowei Cai, Jianqiang Lin, D. Antoniadis, J. D. del Alamo
{"title":"自对准InGaAs mosfet中电场诱导的F−迁移及其抑制","authors":"Xiaowei Cai, Jianqiang Lin, D. Antoniadis, J. D. del Alamo","doi":"10.1109/IEDM.2016.7838338","DOIUrl":null,"url":null,"abstract":"We report, for the first time, a prominent but fully reversible enhancement in transconductance after applying positive gate stress to self-aligned InGaAs MOSFETs. We attribute this to electric-field-induced migration of fluorine ions (F−) introduced during the RIE gate recess process. F− is known to passivate Si donors in InAlAs. In our device structure, an n-InAlAs ledge facilitates the link from the contacts to the intrinsic device. We use secondary ion mass spectroscopy (SIMS) to independently confirm that our process leads to F pile up at the n-InAlAs layer. Transmission line model (TLM) structures confirm F−-induced donor passivation. The understanding derived has lead us to redesign our InGaAs MOSFETs by eliminating n-InAlAs layers and instead use an n-InP ledge. The new device design not only exhibits greatly improved electrical stability but also record performance.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Electric-field induced F− migration in self-aligned InGaAs MOSFETs and mitigation\",\"authors\":\"Xiaowei Cai, Jianqiang Lin, D. Antoniadis, J. D. del Alamo\",\"doi\":\"10.1109/IEDM.2016.7838338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report, for the first time, a prominent but fully reversible enhancement in transconductance after applying positive gate stress to self-aligned InGaAs MOSFETs. We attribute this to electric-field-induced migration of fluorine ions (F−) introduced during the RIE gate recess process. F− is known to passivate Si donors in InAlAs. In our device structure, an n-InAlAs ledge facilitates the link from the contacts to the intrinsic device. We use secondary ion mass spectroscopy (SIMS) to independently confirm that our process leads to F pile up at the n-InAlAs layer. Transmission line model (TLM) structures confirm F−-induced donor passivation. The understanding derived has lead us to redesign our InGaAs MOSFETs by eliminating n-InAlAs layers and instead use an n-InP ledge. The new device design not only exhibits greatly improved electrical stability but also record performance.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electric-field induced F− migration in self-aligned InGaAs MOSFETs and mitigation
We report, for the first time, a prominent but fully reversible enhancement in transconductance after applying positive gate stress to self-aligned InGaAs MOSFETs. We attribute this to electric-field-induced migration of fluorine ions (F−) introduced during the RIE gate recess process. F− is known to passivate Si donors in InAlAs. In our device structure, an n-InAlAs ledge facilitates the link from the contacts to the intrinsic device. We use secondary ion mass spectroscopy (SIMS) to independently confirm that our process leads to F pile up at the n-InAlAs layer. Transmission line model (TLM) structures confirm F−-induced donor passivation. The understanding derived has lead us to redesign our InGaAs MOSFETs by eliminating n-InAlAs layers and instead use an n-InP ledge. The new device design not only exhibits greatly improved electrical stability but also record performance.