{"title":"通过网络流行动力学表征移动目标防御的力量","authors":"Yujuan Han, Wenlian Lu, Shouhuai Xu","doi":"10.1145/2600176.2600180","DOIUrl":null,"url":null,"abstract":"Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and quantitative characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.","PeriodicalId":193860,"journal":{"name":"Symposium and Bootcamp on the Science of Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Characterizing the power of moving target defense via cyber epidemic dynamics\",\"authors\":\"Yujuan Han, Wenlian Lu, Shouhuai Xu\",\"doi\":\"10.1145/2600176.2600180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and quantitative characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.\",\"PeriodicalId\":193860,\"journal\":{\"name\":\"Symposium and Bootcamp on the Science of Security\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium and Bootcamp on the Science of Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600176.2600180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium and Bootcamp on the Science of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600176.2600180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterizing the power of moving target defense via cyber epidemic dynamics
Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and quantitative characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.