计算智能在青光眼医学知识获取中的应用

N. Varachiu, Cynthia Karanicolas, M. Ulieru
{"title":"计算智能在青光眼医学知识获取中的应用","authors":"N. Varachiu, Cynthia Karanicolas, M. Ulieru","doi":"10.1109/COGINF.2002.1039303","DOIUrl":null,"url":null,"abstract":"This paper presents an approach that integrates computational intelligence/soft computing paradigms with clinical investigation methods and knowledge. Computational intelligence methods (including fuzzy logic, neural networks and genetic algorithms) deal in a suitable way with imprecision, uncertainty and partial truth. These aspects can be found quite often in practical medical activities and in medical knowledge. The proposed approach uses a knowledge discovery process in order to develop an intelligent system for diagnosis and prediction of glaucoma. The knowledge acquired is embedded in a fuzzy logic inference system. The resulting neuro-fuzzy glaucoma diagnosis and prediction system is expected to lower the effort, difficulties and risk cost related to this disease (the leading cause of blindness in North America).","PeriodicalId":250129,"journal":{"name":"Proceedings First IEEE International Conference on Cognitive Informatics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Computational intelligence for medical knowledge acquisition with application to glaucoma\",\"authors\":\"N. Varachiu, Cynthia Karanicolas, M. Ulieru\",\"doi\":\"10.1109/COGINF.2002.1039303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach that integrates computational intelligence/soft computing paradigms with clinical investigation methods and knowledge. Computational intelligence methods (including fuzzy logic, neural networks and genetic algorithms) deal in a suitable way with imprecision, uncertainty and partial truth. These aspects can be found quite often in practical medical activities and in medical knowledge. The proposed approach uses a knowledge discovery process in order to develop an intelligent system for diagnosis and prediction of glaucoma. The knowledge acquired is embedded in a fuzzy logic inference system. The resulting neuro-fuzzy glaucoma diagnosis and prediction system is expected to lower the effort, difficulties and risk cost related to this disease (the leading cause of blindness in North America).\",\"PeriodicalId\":250129,\"journal\":{\"name\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2002.1039303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2002.1039303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种将计算智能/软计算范式与临床调查方法和知识相结合的方法。计算智能方法(包括模糊逻辑、神经网络和遗传算法)以合适的方式处理不精确、不确定和部分真。这些方面在实际医疗活动和医学知识中经常可以找到。该方法利用知识发现过程来开发青光眼的智能诊断和预测系统。将所获得的知识嵌入到模糊逻辑推理系统中。由此产生的神经模糊青光眼诊断和预测系统有望降低与该疾病(北美致盲的主要原因)相关的工作量、难度和风险成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational intelligence for medical knowledge acquisition with application to glaucoma
This paper presents an approach that integrates computational intelligence/soft computing paradigms with clinical investigation methods and knowledge. Computational intelligence methods (including fuzzy logic, neural networks and genetic algorithms) deal in a suitable way with imprecision, uncertainty and partial truth. These aspects can be found quite often in practical medical activities and in medical knowledge. The proposed approach uses a knowledge discovery process in order to develop an intelligent system for diagnosis and prediction of glaucoma. The knowledge acquired is embedded in a fuzzy logic inference system. The resulting neuro-fuzzy glaucoma diagnosis and prediction system is expected to lower the effort, difficulties and risk cost related to this disease (the leading cause of blindness in North America).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信