{"title":"高信噪比和低旁瓣电平的波形协方差矩阵","authors":"Sajid Ahmed, Mohamed-Slim Alouini","doi":"10.1109/ICASSP.2013.6638429","DOIUrl":null,"url":null,"abstract":"In this work to exploit the benefits of both multiple-input multiple-output (MIMO)-radar and phased-array a waveform covariance matrix is proposed. Our analytical results show that the proposed covariance matrix yields gain in signal-to-interference-plus-noise ratio (SINR) compared to MIMO-radar while the gain in SINR is close to phased-array and recently proposed phased-MIMO scheme. Transmitted waveforms with the proposed covariance matrix, at the receiver, significantly supress the side-lobe levels compared to phased-array, MIMO-radar, and phased-MIMO schemes. Moreover, in contrast to phased-MIMO our proposed scheme allows same power transmission from each antenna. Simulation results validate the analytical results.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A waveform covariancematrix for high SINR and lowside-lobe levels\",\"authors\":\"Sajid Ahmed, Mohamed-Slim Alouini\",\"doi\":\"10.1109/ICASSP.2013.6638429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work to exploit the benefits of both multiple-input multiple-output (MIMO)-radar and phased-array a waveform covariance matrix is proposed. Our analytical results show that the proposed covariance matrix yields gain in signal-to-interference-plus-noise ratio (SINR) compared to MIMO-radar while the gain in SINR is close to phased-array and recently proposed phased-MIMO scheme. Transmitted waveforms with the proposed covariance matrix, at the receiver, significantly supress the side-lobe levels compared to phased-array, MIMO-radar, and phased-MIMO schemes. Moreover, in contrast to phased-MIMO our proposed scheme allows same power transmission from each antenna. Simulation results validate the analytical results.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A waveform covariancematrix for high SINR and lowside-lobe levels
In this work to exploit the benefits of both multiple-input multiple-output (MIMO)-radar and phased-array a waveform covariance matrix is proposed. Our analytical results show that the proposed covariance matrix yields gain in signal-to-interference-plus-noise ratio (SINR) compared to MIMO-radar while the gain in SINR is close to phased-array and recently proposed phased-MIMO scheme. Transmitted waveforms with the proposed covariance matrix, at the receiver, significantly supress the side-lobe levels compared to phased-array, MIMO-radar, and phased-MIMO schemes. Moreover, in contrast to phased-MIMO our proposed scheme allows same power transmission from each antenna. Simulation results validate the analytical results.