设计漏洞分析与信任基准开发

H. Salmani, M. Tehranipoor, R. Karri
{"title":"设计漏洞分析与信任基准开发","authors":"H. Salmani, M. Tehranipoor, R. Karri","doi":"10.1109/ICCD.2013.6657085","DOIUrl":null,"url":null,"abstract":"The areas of hardware security and trust have experienced major growth over the past several years. However, research in Trojan detection and prevention lacks standard benchmarks and measurements, resulting in inconsistent research outcomes, and ambiguity in analyzing strengths and weaknesses in the techniques developed by different research teams and their advancements to the state-of-the-art. We have developed innovative methodologies that, for the first time, more effectively address the problem. We have developed a vulnerability analysis flow. The flow determines hard-to-detect areas in a circuit that would most probably be used for Trojan implementation to ensure a Trojan goes undetected during production test and extensive functional test analysis. Furthermore, we introduce the Trojan detectability metric to quantify Trojan activation and effect. This metric offers a fair comparison for analyzing weaknesses and strengths of Trojan detection techniques. Using these methodologies, we have developed a large number of trust benchmarks that are available for use by the public, as well as researchers and practitioners in the field.","PeriodicalId":398811,"journal":{"name":"2013 IEEE 31st International Conference on Computer Design (ICCD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"On design vulnerability analysis and trust benchmarks development\",\"authors\":\"H. Salmani, M. Tehranipoor, R. Karri\",\"doi\":\"10.1109/ICCD.2013.6657085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The areas of hardware security and trust have experienced major growth over the past several years. However, research in Trojan detection and prevention lacks standard benchmarks and measurements, resulting in inconsistent research outcomes, and ambiguity in analyzing strengths and weaknesses in the techniques developed by different research teams and their advancements to the state-of-the-art. We have developed innovative methodologies that, for the first time, more effectively address the problem. We have developed a vulnerability analysis flow. The flow determines hard-to-detect areas in a circuit that would most probably be used for Trojan implementation to ensure a Trojan goes undetected during production test and extensive functional test analysis. Furthermore, we introduce the Trojan detectability metric to quantify Trojan activation and effect. This metric offers a fair comparison for analyzing weaknesses and strengths of Trojan detection techniques. Using these methodologies, we have developed a large number of trust benchmarks that are available for use by the public, as well as researchers and practitioners in the field.\",\"PeriodicalId\":398811,\"journal\":{\"name\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2013.6657085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2013.6657085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209

摘要

硬件安全和信任领域在过去几年中经历了重大增长。然而,特洛伊木马检测和预防的研究缺乏标准的基准和测量,导致研究结果不一致,并且在分析不同研究团队开发的技术的优势和劣势以及他们的最新进展时含糊不清。我们开发了创新的方法,第一次更有效地解决了这个问题。我们已经开发了一个漏洞分析流程。该流程确定电路中难以检测的区域,这些区域最有可能用于特洛伊木马的实现,以确保特洛伊木马在生产测试和广泛的功能测试分析期间未被检测到。此外,我们还引入了木马可检测性度量来量化木马的激活和影响。该指标为分析木马检测技术的优缺点提供了公平的比较。使用这些方法,我们开发了大量的信任基准,可供公众以及该领域的研究人员和从业人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On design vulnerability analysis and trust benchmarks development
The areas of hardware security and trust have experienced major growth over the past several years. However, research in Trojan detection and prevention lacks standard benchmarks and measurements, resulting in inconsistent research outcomes, and ambiguity in analyzing strengths and weaknesses in the techniques developed by different research teams and their advancements to the state-of-the-art. We have developed innovative methodologies that, for the first time, more effectively address the problem. We have developed a vulnerability analysis flow. The flow determines hard-to-detect areas in a circuit that would most probably be used for Trojan implementation to ensure a Trojan goes undetected during production test and extensive functional test analysis. Furthermore, we introduce the Trojan detectability metric to quantify Trojan activation and effect. This metric offers a fair comparison for analyzing weaknesses and strengths of Trojan detection techniques. Using these methodologies, we have developed a large number of trust benchmarks that are available for use by the public, as well as researchers and practitioners in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信