未来MEMS惯性传感器的性能、设计与制造

M. Perlmutter, S. Breit
{"title":"未来MEMS惯性传感器的性能、设计与制造","authors":"M. Perlmutter, S. Breit","doi":"10.1109/INERTIALSENSORS.2016.7745671","DOIUrl":null,"url":null,"abstract":"The market for high-performance inertial sensors, tactical grade and above, has been dominated to date by macro-scale devices such as HRGs, RLGs and FOGs. While the size, power requirements, and cost of these sensors have decreased considerably over the past two decades and further reductions can be expected, the tactical IMU size remains on the order of 0.5l, and the cost remains in the $10k range. During the same period, micro-scale inertial sensors based on MEMS technology have been introduced for automotive and consumer electronics applications and are now produced at the rate of several million per day. MEMS IMUs have become truly ubiquitous, however they have so far fallen short of the requirements for high-performance applications. Nevertheless, there have been continuing reductions in their size, power and particularly cost, to less than $3 for an IMU. There is great interest in understanding future trends for MEMS and their potential threat to traditional sensors for tactical and navigation grade applications. One author has many years of experience in developing macro-scale high-performance sensors and IMUs. The other author has many years of experience in supplying design tools to leading MEMS organizations worldwide. We will first describe trends that are affecting MEMS inertial sensors, including commoditization, consolidation of advanced CMOS manufacturing, market demands for increasing package- and chip-scale integration, the Internet of Things (IoT), and the entry of mainstream CMOS foundries to MEMS manufacturing. We'll speculate on the direction that could lead to greatest business success for foundries and their customers. We will then survey promising approaches to improving the performance of MEMS sensors and we will conclude with speculations on the roadmap and timeline for a possible crossover for MEMS in high-performance applications.","PeriodicalId":371210,"journal":{"name":"2016 DGON Intertial Sensors and Systems (ISS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"The future of the MEMS inertial sensor performance, design and manufacturing\",\"authors\":\"M. Perlmutter, S. Breit\",\"doi\":\"10.1109/INERTIALSENSORS.2016.7745671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The market for high-performance inertial sensors, tactical grade and above, has been dominated to date by macro-scale devices such as HRGs, RLGs and FOGs. While the size, power requirements, and cost of these sensors have decreased considerably over the past two decades and further reductions can be expected, the tactical IMU size remains on the order of 0.5l, and the cost remains in the $10k range. During the same period, micro-scale inertial sensors based on MEMS technology have been introduced for automotive and consumer electronics applications and are now produced at the rate of several million per day. MEMS IMUs have become truly ubiquitous, however they have so far fallen short of the requirements for high-performance applications. Nevertheless, there have been continuing reductions in their size, power and particularly cost, to less than $3 for an IMU. There is great interest in understanding future trends for MEMS and their potential threat to traditional sensors for tactical and navigation grade applications. One author has many years of experience in developing macro-scale high-performance sensors and IMUs. The other author has many years of experience in supplying design tools to leading MEMS organizations worldwide. We will first describe trends that are affecting MEMS inertial sensors, including commoditization, consolidation of advanced CMOS manufacturing, market demands for increasing package- and chip-scale integration, the Internet of Things (IoT), and the entry of mainstream CMOS foundries to MEMS manufacturing. We'll speculate on the direction that could lead to greatest business success for foundries and their customers. We will then survey promising approaches to improving the performance of MEMS sensors and we will conclude with speculations on the roadmap and timeline for a possible crossover for MEMS in high-performance applications.\",\"PeriodicalId\":371210,\"journal\":{\"name\":\"2016 DGON Intertial Sensors and Systems (ISS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 DGON Intertial Sensors and Systems (ISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIALSENSORS.2016.7745671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 DGON Intertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIALSENSORS.2016.7745671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

迄今为止,战术级及以上的高性能惯性传感器市场一直由hrg、rlg和fog等宏观设备主导。虽然这些传感器的尺寸、功率要求和成本在过去二十年中已经大大降低,并且可以预期进一步降低,但战术IMU的尺寸仍然在0.5l左右,成本仍然在1万美元的范围内。在同一时期,基于MEMS技术的微尺度惯性传感器已被引入汽车和消费电子应用,现在以每天数百万的速度生产。MEMS imu已经变得无处不在,但是它们到目前为止还不能满足高性能应用的要求。尽管如此,它们的体积、功率、特别是成本都在不断缩小,一个IMU不到3美元。人们对了解MEMS的未来趋势及其对战术和导航级应用的传统传感器的潜在威胁非常感兴趣。作者之一具有多年开发宏观高性能传感器和imu的经验。另一位作者在为全球领先的MEMS组织提供设计工具方面拥有多年的经验。我们将首先描述影响MEMS惯性传感器的趋势,包括商品化、先进CMOS制造的整合、封装和芯片规模集成的市场需求、物联网(IoT)以及主流CMOS代工厂进入MEMS制造。我们将推测可以为铸造厂及其客户带来最大商业成功的方向。然后,我们将调查改善MEMS传感器性能的有希望的方法,并对MEMS在高性能应用中可能交叉的路线图和时间表进行推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The future of the MEMS inertial sensor performance, design and manufacturing
The market for high-performance inertial sensors, tactical grade and above, has been dominated to date by macro-scale devices such as HRGs, RLGs and FOGs. While the size, power requirements, and cost of these sensors have decreased considerably over the past two decades and further reductions can be expected, the tactical IMU size remains on the order of 0.5l, and the cost remains in the $10k range. During the same period, micro-scale inertial sensors based on MEMS technology have been introduced for automotive and consumer electronics applications and are now produced at the rate of several million per day. MEMS IMUs have become truly ubiquitous, however they have so far fallen short of the requirements for high-performance applications. Nevertheless, there have been continuing reductions in their size, power and particularly cost, to less than $3 for an IMU. There is great interest in understanding future trends for MEMS and their potential threat to traditional sensors for tactical and navigation grade applications. One author has many years of experience in developing macro-scale high-performance sensors and IMUs. The other author has many years of experience in supplying design tools to leading MEMS organizations worldwide. We will first describe trends that are affecting MEMS inertial sensors, including commoditization, consolidation of advanced CMOS manufacturing, market demands for increasing package- and chip-scale integration, the Internet of Things (IoT), and the entry of mainstream CMOS foundries to MEMS manufacturing. We'll speculate on the direction that could lead to greatest business success for foundries and their customers. We will then survey promising approaches to improving the performance of MEMS sensors and we will conclude with speculations on the roadmap and timeline for a possible crossover for MEMS in high-performance applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信