{"title":"有向随机图的通信效率分布估计","authors":"Anit Kumar Sahu, D. Jakovetić, D. Bajović, S. Kar","doi":"10.1109/EUROCON.2019.8861544","DOIUrl":null,"url":null,"abstract":"Recently, a communication efficient recursive distributed estimator, $C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\\lt p\\gt C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\\lt p\\gt O(1/C_{t}^{2-\\zeta})$ MSE rate in the number of per-node communications, where $\\zeta \\gt 0$ is arbitrarily small. In this paper, we present directed $C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}, \\mathcal{D}-C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\\mathcal{D}-C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Communication Efficient Distributed Estimation Over Directed Random Graphs\",\"authors\":\"Anit Kumar Sahu, D. Jakovetić, D. Bajović, S. Kar\",\"doi\":\"10.1109/EUROCON.2019.8861544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a communication efficient recursive distributed estimator, $C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\\\\lt p\\\\gt C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\\\\lt p\\\\gt O(1/C_{t}^{2-\\\\zeta})$ MSE rate in the number of per-node communications, where $\\\\zeta \\\\gt 0$ is arbitrarily small. In this paper, we present directed $C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}, \\\\mathcal{D}-C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\\\\mathcal{D}-C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\\\\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\\\\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Communication Efficient Distributed Estimation Over Directed Random Graphs
Recently, a communication efficient recursive distributed estimator, $C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\lt p\gt C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\lt p\gt O(1/C_{t}^{2-\zeta})$ MSE rate in the number of per-node communications, where $\zeta \gt 0$ is arbitrarily small. In this paper, we present directed $C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}, \mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.