有向随机图的通信效率分布估计

Anit Kumar Sahu, D. Jakovetić, D. Bajović, S. Kar
{"title":"有向随机图的通信效率分布估计","authors":"Anit Kumar Sahu, D. Jakovetić, D. Bajović, S. Kar","doi":"10.1109/EUROCON.2019.8861544","DOIUrl":null,"url":null,"abstract":"Recently, a communication efficient recursive distributed estimator, $C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\\lt p\\gt C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\\lt p\\gt O(1/C_{t}^{2-\\zeta})$ MSE rate in the number of per-node communications, where $\\zeta \\gt 0$ is arbitrarily small. In this paper, we present directed $C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}, \\mathcal{D}-C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\\mathcal{D}-C\\mathcal{R}\\mathcal{E}\\mathcal{D}\\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Communication Efficient Distributed Estimation Over Directed Random Graphs\",\"authors\":\"Anit Kumar Sahu, D. Jakovetić, D. Bajović, S. Kar\",\"doi\":\"10.1109/EUROCON.2019.8861544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a communication efficient recursive distributed estimator, $C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\\\\lt p\\\\gt C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\\\\lt p\\\\gt O(1/C_{t}^{2-\\\\zeta})$ MSE rate in the number of per-node communications, where $\\\\zeta \\\\gt 0$ is arbitrarily small. In this paper, we present directed $C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}, \\\\mathcal{D}-C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\\\\mathcal{D}-C\\\\mathcal{R}\\\\mathcal{E}\\\\mathcal{D}\\\\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\\\\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\\\\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,人们提出了一种通信高效递归分布估计器$C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$,它利用了越来越稀疏的随机双向通信。$\lt p\gt C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$在每个节点处理的样本t的数量上实现了顺序最优的$O(1/t)$均方误差(MSE)率,在每个节点通信的数量上实现了$\lt p\gt O(1/C_{t}^{2-\zeta})$均方误差率,其中$\zeta \gt 0$是任意小的。在本文中,我们提出有向$C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}, \mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$短分布递归估计器,利用有向日益稀疏的通信。我们表明$\mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$进一步显著提高了通信效率,实现了$O(1/c\mathcal{T})$通信MSE率具有任意高指数$\kappa$,同时保持了顺序最优的$O(1/t)$样本MSE率。在实际数据集上的数值算例证实了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication Efficient Distributed Estimation Over Directed Random Graphs
Recently, a communication efficient recursive distributed estimator, $C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$, has been proposed, that utilizes increasingly sparse randomized bidirectional communications. $\lt p\gt C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ achieves order-optimal $O(1/t)$ mean square error (MSE) rate in the number of per-node processed samples t, and a $\lt p\gt O(1/C_{t}^{2-\zeta})$ MSE rate in the number of per-node communications, where $\zeta \gt 0$ is arbitrarily small. In this paper, we present directed $C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}, \mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ for short-a distributed recursive estimator that utilizes directed increasingly sparse communications. We show that $\mathcal{D}-C\mathcal{R}\mathcal{E}\mathcal{D}\mathcal{O}$ further dramatically improves communication efficiency, achieving the $O(1/c\mathcal{T})$ communication MSE rate with arbitrarily high exponent $\kappa$, while keeping the order-optimal $O(1/t)$ sample-wise MSE rate. Numerical examples on real data sets confirm our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信