基于乘式扩展卡尔曼滤波的微型飞行器四元数姿态估计

James K. Hall, Nathan B. Knoebel, T. McLain
{"title":"基于乘式扩展卡尔曼滤波的微型飞行器四元数姿态估计","authors":"James K. Hall, Nathan B. Knoebel, T. McLain","doi":"10.1109/PLANS.2008.4570043","DOIUrl":null,"url":null,"abstract":"Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to describe vehicle orientation, we develop a multiplicative, nonlinear variation of the Kalman filter to fuse data from low-cost sensors. The sensor suite is comprised of gyroscopes, accelerometers, and a GPS receiver. Our filter states consist of the three components of an Euler attitude error vector. In parallel with the state time update, we utilize the gyroscope measurements for the time propagation of the attitude quaternion. The accelerometer and the GPS sensors are used independently for the measurement update portion of the filter. For both sensors, a vector arithmetic approach is used to determine the Euler attitude error vector. Following each measurement update, a multiplicative reset operation moves the attitude error information from the state into the attitude estimate. This reset operation utilizes quaternion algebra to implicitly maintain the unity-norm constraint. We demonstrate the effectiveness of our attitude estimation algorithm through flight simulations of aggressive maneuvers such as loops and small-radius circles.","PeriodicalId":446381,"journal":{"name":"2008 IEEE/ION Position, Location and Navigation Symposium","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Quaternion attitude estimation for miniature air vehicles using a multiplicative extended Kalman filter\",\"authors\":\"James K. Hall, Nathan B. Knoebel, T. McLain\",\"doi\":\"10.1109/PLANS.2008.4570043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to describe vehicle orientation, we develop a multiplicative, nonlinear variation of the Kalman filter to fuse data from low-cost sensors. The sensor suite is comprised of gyroscopes, accelerometers, and a GPS receiver. Our filter states consist of the three components of an Euler attitude error vector. In parallel with the state time update, we utilize the gyroscope measurements for the time propagation of the attitude quaternion. The accelerometer and the GPS sensors are used independently for the measurement update portion of the filter. For both sensors, a vector arithmetic approach is used to determine the Euler attitude error vector. Following each measurement update, a multiplicative reset operation moves the attitude error information from the state into the attitude estimate. This reset operation utilizes quaternion algebra to implicitly maintain the unity-norm constraint. We demonstrate the effectiveness of our attitude estimation algorithm through flight simulations of aggressive maneuvers such as loops and small-radius circles.\",\"PeriodicalId\":446381,\"journal\":{\"name\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2008.4570043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2008.4570043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

利用欧拉-罗德里格斯对称参数(姿态四元数)来描述飞行器的方向,我们开发了一种乘法非线性卡尔曼滤波器来融合来自低成本传感器的数据。传感器套件由陀螺仪、加速度计和GPS接收器组成。我们的滤波状态由欧拉姿态误差矢量的三个分量组成。在状态时间更新的同时,我们利用陀螺仪测量来进行姿态四元数的时间传播。所述加速度计和GPS传感器分别用于所述滤波器的测量更新部分。对于这两种传感器,采用矢量算法确定欧拉姿态误差矢量。在每次测量更新之后,一个乘法重置操作将姿态误差信息从状态移动到姿态估计中。这种重置操作利用四元数代数来隐式地维护单位范数约束。通过对凶悍机动如回环和小半径圆的飞行仿真,验证了姿态估计算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternion attitude estimation for miniature air vehicles using a multiplicative extended Kalman filter
Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to describe vehicle orientation, we develop a multiplicative, nonlinear variation of the Kalman filter to fuse data from low-cost sensors. The sensor suite is comprised of gyroscopes, accelerometers, and a GPS receiver. Our filter states consist of the three components of an Euler attitude error vector. In parallel with the state time update, we utilize the gyroscope measurements for the time propagation of the attitude quaternion. The accelerometer and the GPS sensors are used independently for the measurement update portion of the filter. For both sensors, a vector arithmetic approach is used to determine the Euler attitude error vector. Following each measurement update, a multiplicative reset operation moves the attitude error information from the state into the attitude estimate. This reset operation utilizes quaternion algebra to implicitly maintain the unity-norm constraint. We demonstrate the effectiveness of our attitude estimation algorithm through flight simulations of aggressive maneuvers such as loops and small-radius circles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信