Wang Changshuan, Guo Hongzhi, Jiao Guandong, Niu Yuanyuan, Xie Mingzhao
{"title":"一致入孔深穿透刺激流聚能装药在页岩气藏中的应用","authors":"Wang Changshuan, Guo Hongzhi, Jiao Guandong, Niu Yuanyuan, Xie Mingzhao","doi":"10.11648/J.AJASR.20190501.14","DOIUrl":null,"url":null,"abstract":"To address the issues of inefficient hydraulic fracturing on perforation clusters in shale gas horizontal wells caused by the inconsistent size of entrance holes on the casing, Stimstream shaped charge providing consistent hole and deep-penetration was introduced and its special performance was analyzed. Surface concrete target test and field test were conducted respectively to compare the performance between this kind of charge and conventional deep penetration charges made in China. In surface concrete target test, the average hole diameter of Stimstream shaped charge in 0°, 90°, 180°, 270° phasing is 9.4mm, 9.3mm, 9.3mm, 8.9mm, the average hole diameter of conventional deep penetration charges in 0°, 90°, 180°, 270° phasing is 9.3mm, 8.6mm, 6.5mm, 7.0mm respectively. The results shown that Stimstream shaped charge can provide uniform and big holes on the casing regardless of different clearance between perforating gun and casing. In three field testings, comparing the field data of S3406D Stimstream charge and domestic SDP35HMX25 shaped charges, it proven that S3406D can reduce the average hydraulic breakdown pressure by 2044.5 psi, 1189psi and 1261.5psi respectively, and reduce the average treatment pressure to pump proppant by 696psi, 652.5psi and 928psi respectively. It has remarkable effectiveness on reducing the breakdown pressure and treatment pressure of shale gas formations during hydraulic fracturing operation.","PeriodicalId":414962,"journal":{"name":"American Journal of Applied Scientific Research","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Stimstream Shaped Charge with Consistent Entrance Hole and Deep Penetration in Shale Gas Reservoir\",\"authors\":\"Wang Changshuan, Guo Hongzhi, Jiao Guandong, Niu Yuanyuan, Xie Mingzhao\",\"doi\":\"10.11648/J.AJASR.20190501.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issues of inefficient hydraulic fracturing on perforation clusters in shale gas horizontal wells caused by the inconsistent size of entrance holes on the casing, Stimstream shaped charge providing consistent hole and deep-penetration was introduced and its special performance was analyzed. Surface concrete target test and field test were conducted respectively to compare the performance between this kind of charge and conventional deep penetration charges made in China. In surface concrete target test, the average hole diameter of Stimstream shaped charge in 0°, 90°, 180°, 270° phasing is 9.4mm, 9.3mm, 9.3mm, 8.9mm, the average hole diameter of conventional deep penetration charges in 0°, 90°, 180°, 270° phasing is 9.3mm, 8.6mm, 6.5mm, 7.0mm respectively. The results shown that Stimstream shaped charge can provide uniform and big holes on the casing regardless of different clearance between perforating gun and casing. In three field testings, comparing the field data of S3406D Stimstream charge and domestic SDP35HMX25 shaped charges, it proven that S3406D can reduce the average hydraulic breakdown pressure by 2044.5 psi, 1189psi and 1261.5psi respectively, and reduce the average treatment pressure to pump proppant by 696psi, 652.5psi and 928psi respectively. It has remarkable effectiveness on reducing the breakdown pressure and treatment pressure of shale gas formations during hydraulic fracturing operation.\",\"PeriodicalId\":414962,\"journal\":{\"name\":\"American Journal of Applied Scientific Research\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Applied Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJASR.20190501.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Applied Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJASR.20190501.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Stimstream Shaped Charge with Consistent Entrance Hole and Deep Penetration in Shale Gas Reservoir
To address the issues of inefficient hydraulic fracturing on perforation clusters in shale gas horizontal wells caused by the inconsistent size of entrance holes on the casing, Stimstream shaped charge providing consistent hole and deep-penetration was introduced and its special performance was analyzed. Surface concrete target test and field test were conducted respectively to compare the performance between this kind of charge and conventional deep penetration charges made in China. In surface concrete target test, the average hole diameter of Stimstream shaped charge in 0°, 90°, 180°, 270° phasing is 9.4mm, 9.3mm, 9.3mm, 8.9mm, the average hole diameter of conventional deep penetration charges in 0°, 90°, 180°, 270° phasing is 9.3mm, 8.6mm, 6.5mm, 7.0mm respectively. The results shown that Stimstream shaped charge can provide uniform and big holes on the casing regardless of different clearance between perforating gun and casing. In three field testings, comparing the field data of S3406D Stimstream charge and domestic SDP35HMX25 shaped charges, it proven that S3406D can reduce the average hydraulic breakdown pressure by 2044.5 psi, 1189psi and 1261.5psi respectively, and reduce the average treatment pressure to pump proppant by 696psi, 652.5psi and 928psi respectively. It has remarkable effectiveness on reducing the breakdown pressure and treatment pressure of shale gas formations during hydraulic fracturing operation.