基于粗糙集理论的CBR检索方法研究

Hui Li, Ye Song, Xiaoping Li, Qiongxin Liu, Yuanfang Zhu
{"title":"基于粗糙集理论的CBR检索方法研究","authors":"Hui Li, Ye Song, Xiaoping Li, Qiongxin Liu, Yuanfang Zhu","doi":"10.1109/ICSESS.2015.7339220","DOIUrl":null,"url":null,"abstract":"Case retrieval is the key technology of case-based reasoning (CBR), directly affect the efficiency and quality of CBR. For the measurement issues of similar cases, using rough set theory to determine the importance of attributes and to distribute the rational weights of each property. Taking the improved nearest neighbor method which is based on the combination of Hamming distance and Euclidean distance to solve case similarity, improve the accuracy and efficiency of case matching.","PeriodicalId":335871,"journal":{"name":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research of CBR retrieval method based on rough set theory\",\"authors\":\"Hui Li, Ye Song, Xiaoping Li, Qiongxin Liu, Yuanfang Zhu\",\"doi\":\"10.1109/ICSESS.2015.7339220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Case retrieval is the key technology of case-based reasoning (CBR), directly affect the efficiency and quality of CBR. For the measurement issues of similar cases, using rough set theory to determine the importance of attributes and to distribute the rational weights of each property. Taking the improved nearest neighbor method which is based on the combination of Hamming distance and Euclidean distance to solve case similarity, improve the accuracy and efficiency of case matching.\",\"PeriodicalId\":335871,\"journal\":{\"name\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2015.7339220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2015.7339220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

案例检索是案例推理的关键技术,它直接影响到案例推理的效率和质量。对于类似情况下的度量问题,利用粗糙集理论确定属性的重要程度,分配各属性的合理权值。采用基于汉明距离和欧几里得距离结合的改进最近邻法求解案例相似度,提高了案例匹配的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of CBR retrieval method based on rough set theory
Case retrieval is the key technology of case-based reasoning (CBR), directly affect the efficiency and quality of CBR. For the measurement issues of similar cases, using rough set theory to determine the importance of attributes and to distribute the rational weights of each property. Taking the improved nearest neighbor method which is based on the combination of Hamming distance and Euclidean distance to solve case similarity, improve the accuracy and efficiency of case matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信