一个免费的Web API,用于单个和多个文档摘要

Massimo Mauro, Sergio Benini, N. Adami, A. Signoroni, R. Leonardi, Luca Canini
{"title":"一个免费的Web API,用于单个和多个文档摘要","authors":"Massimo Mauro, Sergio Benini, N. Adami, A. Signoroni, R. Leonardi, Luca Canini","doi":"10.1145/3095713.3095738","DOIUrl":null,"url":null,"abstract":"In this work we present a free Web API for single and multi-text summarization. The summarization algorithm follows an extractive approach, thus selecting the most relevant sentences from a single document or a document set. It integrates in a novel pipeline different text analysis techniques - ranging from keyword and entity extraction, to topic modelling and sentence clustering - and gives SoA competitive results. The application, written in Python, supports as input both plain texts and Web URLs. The API is publicly accessible for free using the specific conference token1 as described in the reference page2. The browser-based demo version, for summarization of single documents only, is publicly accessible at http://yonderlabs.com/demo.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A free Web API for single and multi-document summarization\",\"authors\":\"Massimo Mauro, Sergio Benini, N. Adami, A. Signoroni, R. Leonardi, Luca Canini\",\"doi\":\"10.1145/3095713.3095738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a free Web API for single and multi-text summarization. The summarization algorithm follows an extractive approach, thus selecting the most relevant sentences from a single document or a document set. It integrates in a novel pipeline different text analysis techniques - ranging from keyword and entity extraction, to topic modelling and sentence clustering - and gives SoA competitive results. The application, written in Python, supports as input both plain texts and Web URLs. The API is publicly accessible for free using the specific conference token1 as described in the reference page2. The browser-based demo version, for summarization of single documents only, is publicly accessible at http://yonderlabs.com/demo.\",\"PeriodicalId\":310224,\"journal\":{\"name\":\"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3095713.3095738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提供了一个免费的Web API,用于单文本和多文本摘要。摘要算法采用提取方法,从单个文档或文档集中选择最相关的句子。它将不同的文本分析技术(从关键字和实体提取,到主题建模和句子聚类)集成在一个新颖的管道中,并给出了具有竞争力的SoA结果。该应用程序是用Python编写的,支持纯文本和Web url作为输入。该API可以使用参考页面2中描述的特定会议令牌1免费公开访问。基于浏览器的演示版本(仅用于单个文档的摘要)可在http://yonderlabs.com/demo上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A free Web API for single and multi-document summarization
In this work we present a free Web API for single and multi-text summarization. The summarization algorithm follows an extractive approach, thus selecting the most relevant sentences from a single document or a document set. It integrates in a novel pipeline different text analysis techniques - ranging from keyword and entity extraction, to topic modelling and sentence clustering - and gives SoA competitive results. The application, written in Python, supports as input both plain texts and Web URLs. The API is publicly accessible for free using the specific conference token1 as described in the reference page2. The browser-based demo version, for summarization of single documents only, is publicly accessible at http://yonderlabs.com/demo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信