模拟人类手部运动的约束

John Y. Lin, Ying Wu, Thomas S. Huang
{"title":"模拟人类手部运动的约束","authors":"John Y. Lin, Ying Wu, Thomas S. Huang","doi":"10.1109/HUMO.2000.897381","DOIUrl":null,"url":null,"abstract":"Hand motion capture is one of the most important parts of gesture interfaces. Many current approaches to this task generally involve a formidable nonlinear optimization problem in a large search space. Motion capture can be achieved more cost-efficiently when considering the motion constraints of a hand. Although some constraints can be represented as equalities or inequalities, there exist many constraints which cannot be explicitly represented. In this paper, we propose a learning approach to model the hand configuration space directly. The redundancy of the configuration space can be eliminated by finding a lower-dimensional subspace of the original space. Finger motion is modeled in this subspace based on the linear behavior observed in the real motion data collected by a CyberGlove. Employing the constrained motion model, we are able to efficiently capture finger motion from video inputs. Several experiments show that our proposed model is helpful for capturing articulated motion.","PeriodicalId":384462,"journal":{"name":"Proceedings Workshop on Human Motion","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"330","resultStr":"{\"title\":\"Modeling the constraints of human hand motion\",\"authors\":\"John Y. Lin, Ying Wu, Thomas S. Huang\",\"doi\":\"10.1109/HUMO.2000.897381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand motion capture is one of the most important parts of gesture interfaces. Many current approaches to this task generally involve a formidable nonlinear optimization problem in a large search space. Motion capture can be achieved more cost-efficiently when considering the motion constraints of a hand. Although some constraints can be represented as equalities or inequalities, there exist many constraints which cannot be explicitly represented. In this paper, we propose a learning approach to model the hand configuration space directly. The redundancy of the configuration space can be eliminated by finding a lower-dimensional subspace of the original space. Finger motion is modeled in this subspace based on the linear behavior observed in the real motion data collected by a CyberGlove. Employing the constrained motion model, we are able to efficiently capture finger motion from video inputs. Several experiments show that our proposed model is helpful for capturing articulated motion.\",\"PeriodicalId\":384462,\"journal\":{\"name\":\"Proceedings Workshop on Human Motion\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"330\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Workshop on Human Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMO.2000.897381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Workshop on Human Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMO.2000.897381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 330

摘要

手部动作捕捉是手势界面的重要组成部分之一。目前许多解决这一问题的方法通常都涉及到一个巨大搜索空间中的非线性优化问题。当考虑到手的运动限制时,动作捕捉可以更经济有效地实现。虽然有些约束可以表示为等式或不等式,但仍有许多约束不能显式表示。在本文中,我们提出了一种直接建模手部构型空间的学习方法。可以通过寻找原空间的低维子空间来消除位形空间的冗余。基于CyberGlove收集的真实运动数据中观察到的线性行为,在该子空间中对手指运动进行建模。利用约束运动模型,我们能够有效地从视频输入中捕获手指运动。实验结果表明,本文提出的模型有助于捕获关节运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the constraints of human hand motion
Hand motion capture is one of the most important parts of gesture interfaces. Many current approaches to this task generally involve a formidable nonlinear optimization problem in a large search space. Motion capture can be achieved more cost-efficiently when considering the motion constraints of a hand. Although some constraints can be represented as equalities or inequalities, there exist many constraints which cannot be explicitly represented. In this paper, we propose a learning approach to model the hand configuration space directly. The redundancy of the configuration space can be eliminated by finding a lower-dimensional subspace of the original space. Finger motion is modeled in this subspace based on the linear behavior observed in the real motion data collected by a CyberGlove. Employing the constrained motion model, we are able to efficiently capture finger motion from video inputs. Several experiments show that our proposed model is helpful for capturing articulated motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信