基于隐马尔可夫模型的背景不变静态手势识别

R. Vieriu, Ionut Mironica, B. Goras
{"title":"基于隐马尔可夫模型的背景不变静态手势识别","authors":"R. Vieriu, Ionut Mironica, B. Goras","doi":"10.1109/ISSCS.2013.6651245","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of Static Hand Gesture Recognition (SHGR) and proposes a fast yet simple solution based on Discrete Hidden Markov Models (DHMMs) that use features extracted from the hand contours. In addition to previous work, the use of depth information ensures robustness to the overall system, making it background invariant. Experiments carried on a challenging noisy dataset reveal the superior discriminating as well as generalizing abilities of statistical models, when compared to state-of-the-art methods.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Background invariant static hand gesture recognition based on Hidden Markov Models\",\"authors\":\"R. Vieriu, Ionut Mironica, B. Goras\",\"doi\":\"10.1109/ISSCS.2013.6651245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of Static Hand Gesture Recognition (SHGR) and proposes a fast yet simple solution based on Discrete Hidden Markov Models (DHMMs) that use features extracted from the hand contours. In addition to previous work, the use of depth information ensures robustness to the overall system, making it background invariant. Experiments carried on a challenging noisy dataset reveal the superior discriminating as well as generalizing abilities of statistical models, when compared to state-of-the-art methods.\",\"PeriodicalId\":260263,\"journal\":{\"name\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2013.6651245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对静态手势识别(SHGR)问题,提出了一种基于离散隐马尔可夫模型(dhmm)的快速而简单的方法,该方法利用从手部轮廓中提取的特征进行识别。除了之前的工作之外,深度信息的使用确保了对整个系统的鲁棒性,使其具有背景不变性。在具有挑战性的噪声数据集上进行的实验表明,与最先进的方法相比,统计模型具有优越的判别和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Background invariant static hand gesture recognition based on Hidden Markov Models
This paper addresses the problem of Static Hand Gesture Recognition (SHGR) and proposes a fast yet simple solution based on Discrete Hidden Markov Models (DHMMs) that use features extracted from the hand contours. In addition to previous work, the use of depth information ensures robustness to the overall system, making it background invariant. Experiments carried on a challenging noisy dataset reveal the superior discriminating as well as generalizing abilities of statistical models, when compared to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信