对移动目标的信息搜索

E. Kagan, I. Ben-Gal
{"title":"对移动目标的信息搜索","authors":"E. Kagan, I. Ben-Gal","doi":"10.1109/EEEI.2006.321133","DOIUrl":null,"url":null,"abstract":"We consider the problem of search for a randomly moving target in a discrete domain. The action available to the searcher is checking a sub-domain to detect whether the target is somewhere in this sub-domain or not. The procedure terminates if the searcher finds the target in a sub-domain that contains only one point. Starting from the Korf and Ishida-Korf algorithms, we suggest the informational learning real-time algorithm and the informational moving target search algorithm running on a states space with informational metric. We describe the properties of these algorithms and compare them with the known Zimmerman search procedure, with the generalized optimal testing algorithm, designed by Hartmann et al, and with the Pollock model of search. To illustrate the work of the informational moving target search algorithm, we present the results of simulative trials in comparison with the greedy probabilistic search procedure.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Informational Search for a Moving Target\",\"authors\":\"E. Kagan, I. Ben-Gal\",\"doi\":\"10.1109/EEEI.2006.321133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of search for a randomly moving target in a discrete domain. The action available to the searcher is checking a sub-domain to detect whether the target is somewhere in this sub-domain or not. The procedure terminates if the searcher finds the target in a sub-domain that contains only one point. Starting from the Korf and Ishida-Korf algorithms, we suggest the informational learning real-time algorithm and the informational moving target search algorithm running on a states space with informational metric. We describe the properties of these algorithms and compare them with the known Zimmerman search procedure, with the generalized optimal testing algorithm, designed by Hartmann et al, and with the Pollock model of search. To illustrate the work of the informational moving target search algorithm, we present the results of simulative trials in comparison with the greedy probabilistic search procedure.\",\"PeriodicalId\":142814,\"journal\":{\"name\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEI.2006.321133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究离散域上随机运动目标的搜索问题。搜索者可用的操作是检查子域以检测目标是否在该子域的某个位置。如果搜索器在只包含一个点的子域中找到目标,则过程终止。在Korf算法和Ishida-Korf算法的基础上,提出了运行在具有信息度量的状态空间上的信息学习实时算法和信息运动目标搜索算法。我们描述了这些算法的性质,并将它们与已知的Zimmerman搜索过程、Hartmann等人设计的广义最优测试算法以及Pollock搜索模型进行了比较。为了说明信息移动目标搜索算法的工作,我们给出了与贪婪概率搜索算法进行比较的模拟试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Informational Search for a Moving Target
We consider the problem of search for a randomly moving target in a discrete domain. The action available to the searcher is checking a sub-domain to detect whether the target is somewhere in this sub-domain or not. The procedure terminates if the searcher finds the target in a sub-domain that contains only one point. Starting from the Korf and Ishida-Korf algorithms, we suggest the informational learning real-time algorithm and the informational moving target search algorithm running on a states space with informational metric. We describe the properties of these algorithms and compare them with the known Zimmerman search procedure, with the generalized optimal testing algorithm, designed by Hartmann et al, and with the Pollock model of search. To illustrate the work of the informational moving target search algorithm, we present the results of simulative trials in comparison with the greedy probabilistic search procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信