{"title":"快速并发无锁二叉搜索树","authors":"Aravind Natarajan, N. Mittal","doi":"10.1145/2555243.2555256","DOIUrl":null,"url":null,"abstract":"We present a new lock-free algorithm for concurrent manipulation of a binary search tree in an asynchronous shared memory system that supports search, insert and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (SETB) atomic instructions, both of which are commonly supported by many modern processors including Intel~64 and AMD64.\n In contrast to existing lock-free algorithms for a binary search tree, our algorithm is based on marking edges rather than nodes. As a result, when compared to other lock-free algorithms, modify (insert and delete) operations in our algorithm work on a smaller portion of the tree, thereby reducing conflicts, and execute fewer atomic instructions (one for insert and three for delete). Our experiments indicate that our lock-free algorithm significantly outperforms all other algorithms for a concurrent binary search tree in many cases, especially when contention is high, by as much as 100%.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Fast concurrent lock-free binary search trees\",\"authors\":\"Aravind Natarajan, N. Mittal\",\"doi\":\"10.1145/2555243.2555256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new lock-free algorithm for concurrent manipulation of a binary search tree in an asynchronous shared memory system that supports search, insert and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (SETB) atomic instructions, both of which are commonly supported by many modern processors including Intel~64 and AMD64.\\n In contrast to existing lock-free algorithms for a binary search tree, our algorithm is based on marking edges rather than nodes. As a result, when compared to other lock-free algorithms, modify (insert and delete) operations in our algorithm work on a smaller portion of the tree, thereby reducing conflicts, and execute fewer atomic instructions (one for insert and three for delete). Our experiments indicate that our lock-free algorithm significantly outperforms all other algorithms for a concurrent binary search tree in many cases, especially when contention is high, by as much as 100%.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2555243.2555256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new lock-free algorithm for concurrent manipulation of a binary search tree in an asynchronous shared memory system that supports search, insert and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (SETB) atomic instructions, both of which are commonly supported by many modern processors including Intel~64 and AMD64.
In contrast to existing lock-free algorithms for a binary search tree, our algorithm is based on marking edges rather than nodes. As a result, when compared to other lock-free algorithms, modify (insert and delete) operations in our algorithm work on a smaller portion of the tree, thereby reducing conflicts, and execute fewer atomic instructions (one for insert and three for delete). Our experiments indicate that our lock-free algorithm significantly outperforms all other algorithms for a concurrent binary search tree in many cases, especially when contention is high, by as much as 100%.