{"title":"在折叠能量格局中寻找吸引子","authors":"W. Ndifon, J. Dushoff","doi":"10.4018/978-1-60960-491-2.ch025","DOIUrl":null,"url":null,"abstract":"RNA sequences fold into their native conformations by means of an adaptive search of their folding energy landscapes. The energy landscape may contain one or more suboptimal attractor conformations, making it possible for an RNA sequence to become trapped in a suboptimal attractor during the folding process. How the probability that an RNA sequence will find a given attractor before it finds another one depends on the relative positions of those attractors on the energy landscape is not well understood. Similarly, there is an inadequate understanding of the mechanisms that underlie differences in the amount of time an RNA sequence spends in a particular state. Elucidation of those mechanisms would contribute to the understanding of constraints operating on RNA folding. This chapter explores the kinetics of RNA folding using theoretical models and experimental data. Discrepancies between experimental predictions and expectations based on prevailing assumptions about the determinants of RNA folding kinetics are highlighted. An analogy between kinetic accessibility and evolutionary accessibility is also discussed. DOI: 10.4018/978-1-60960-491-2.ch025","PeriodicalId":254251,"journal":{"name":"Handbook of Research on Computational and Systems Biology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finding Attractors on a Folding Energy Landscape\",\"authors\":\"W. Ndifon, J. Dushoff\",\"doi\":\"10.4018/978-1-60960-491-2.ch025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA sequences fold into their native conformations by means of an adaptive search of their folding energy landscapes. The energy landscape may contain one or more suboptimal attractor conformations, making it possible for an RNA sequence to become trapped in a suboptimal attractor during the folding process. How the probability that an RNA sequence will find a given attractor before it finds another one depends on the relative positions of those attractors on the energy landscape is not well understood. Similarly, there is an inadequate understanding of the mechanisms that underlie differences in the amount of time an RNA sequence spends in a particular state. Elucidation of those mechanisms would contribute to the understanding of constraints operating on RNA folding. This chapter explores the kinetics of RNA folding using theoretical models and experimental data. Discrepancies between experimental predictions and expectations based on prevailing assumptions about the determinants of RNA folding kinetics are highlighted. An analogy between kinetic accessibility and evolutionary accessibility is also discussed. DOI: 10.4018/978-1-60960-491-2.ch025\",\"PeriodicalId\":254251,\"journal\":{\"name\":\"Handbook of Research on Computational and Systems Biology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Computational and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-60960-491-2.ch025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Computational and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60960-491-2.ch025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RNA sequences fold into their native conformations by means of an adaptive search of their folding energy landscapes. The energy landscape may contain one or more suboptimal attractor conformations, making it possible for an RNA sequence to become trapped in a suboptimal attractor during the folding process. How the probability that an RNA sequence will find a given attractor before it finds another one depends on the relative positions of those attractors on the energy landscape is not well understood. Similarly, there is an inadequate understanding of the mechanisms that underlie differences in the amount of time an RNA sequence spends in a particular state. Elucidation of those mechanisms would contribute to the understanding of constraints operating on RNA folding. This chapter explores the kinetics of RNA folding using theoretical models and experimental data. Discrepancies between experimental predictions and expectations based on prevailing assumptions about the determinants of RNA folding kinetics are highlighted. An analogy between kinetic accessibility and evolutionary accessibility is also discussed. DOI: 10.4018/978-1-60960-491-2.ch025