低比质量,自由浮动风能概念高达40兆瓦

W. Alexander
{"title":"低比质量,自由浮动风能概念高达40兆瓦","authors":"W. Alexander","doi":"10.1115/iowtc2019-7590","DOIUrl":null,"url":null,"abstract":"\n Presented here is a low specific mass, free-floating, open ocean, wind energy concept with nominal power capacity to 40 MW, on-board liquid fuels generation, and with operational and survival wave heights to 12 and 40 meters respectively. The estimated specific structural mass of 42 kG/kWp is about 1/3 of the specific mass of much smaller land-based turbines, and less than 6% of the specific structural mass of existing off-shore floating wind turbines. The turbine platform may be operated un-tethered in the open ocean using about 8% of the generated power, on average, for active station keeping. The generated energy may be stored on board via hydrogen electrolysis and liquification for periodic tanker unloading. Reduction of moment loads in the blades and nacelle support structure as well as the unique deep-water foundation result in the low specific mass and high stability.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW\",\"authors\":\"W. Alexander\",\"doi\":\"10.1115/iowtc2019-7590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Presented here is a low specific mass, free-floating, open ocean, wind energy concept with nominal power capacity to 40 MW, on-board liquid fuels generation, and with operational and survival wave heights to 12 and 40 meters respectively. The estimated specific structural mass of 42 kG/kWp is about 1/3 of the specific mass of much smaller land-based turbines, and less than 6% of the specific structural mass of existing off-shore floating wind turbines. The turbine platform may be operated un-tethered in the open ocean using about 8% of the generated power, on average, for active station keeping. The generated energy may be stored on board via hydrogen electrolysis and liquification for periodic tanker unloading. Reduction of moment loads in the blades and nacelle support structure as well as the unique deep-water foundation result in the low specific mass and high stability.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里展示的是一个低比质量,自由漂浮,开放的海洋,风能概念,标称功率容量为40兆瓦,船上有液体燃料发电,工作和生存波高分别为12米和40米。估计42 kG/kWp的比结构质量约为小型陆基涡轮机比质量的1/3,不到现有海上浮式风力涡轮机比结构质量的6%。涡轮机平台可以在开放的海洋中无系绳运行,平均使用约8%的发电功率,用于主动站的保持。产生的能量可以通过氢电解和液化储存在船上,以供油轮定期卸货。减小了叶片和机舱支撑结构的弯矩载荷以及独特的深水基础,使其具有低比质量和高稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW
Presented here is a low specific mass, free-floating, open ocean, wind energy concept with nominal power capacity to 40 MW, on-board liquid fuels generation, and with operational and survival wave heights to 12 and 40 meters respectively. The estimated specific structural mass of 42 kG/kWp is about 1/3 of the specific mass of much smaller land-based turbines, and less than 6% of the specific structural mass of existing off-shore floating wind turbines. The turbine platform may be operated un-tethered in the open ocean using about 8% of the generated power, on average, for active station keeping. The generated energy may be stored on board via hydrogen electrolysis and liquification for periodic tanker unloading. Reduction of moment loads in the blades and nacelle support structure as well as the unique deep-water foundation result in the low specific mass and high stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信