{"title":"嵌入式软件系统多策略分类器的评估","authors":"T. Khoshgoftaar, Kehan Gao","doi":"10.1109/ICTAI.2006.35","DOIUrl":null,"url":null,"abstract":"In this paper, a new classification model, RB2CBL, is proposed. Its structure and methodology are described. By cascading a rule-based (RB) model with two case-based learning (CBL) models, RB2CBL possesses the merits of both RB model and CBL model and restrains their drawbacks. In the RB2CBL model, the parameter optimization of the CBL models is essential, and the embedded genetic algorithm optimizer is used. In our case study, a dataset collected from initial releases of two large, Windowscopy-based embedded system applications, which were used primarily for customizing the configuration of wireless telecommunications products, is processed to investigate and evaluate the models. The results show that, by suitably choosing accuracy settings of the RB model, RB2CBL model outperforms the RB model alone without overfitting. In practice, the RB2CBL model effectively reduced the misclassification rates and improved prediction accuracy for the embedded software system","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Assessment of a Multi-Strategy Classifier for an Embedded Software System\",\"authors\":\"T. Khoshgoftaar, Kehan Gao\",\"doi\":\"10.1109/ICTAI.2006.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new classification model, RB2CBL, is proposed. Its structure and methodology are described. By cascading a rule-based (RB) model with two case-based learning (CBL) models, RB2CBL possesses the merits of both RB model and CBL model and restrains their drawbacks. In the RB2CBL model, the parameter optimization of the CBL models is essential, and the embedded genetic algorithm optimizer is used. In our case study, a dataset collected from initial releases of two large, Windowscopy-based embedded system applications, which were used primarily for customizing the configuration of wireless telecommunications products, is processed to investigate and evaluate the models. The results show that, by suitably choosing accuracy settings of the RB model, RB2CBL model outperforms the RB model alone without overfitting. In practice, the RB2CBL model effectively reduced the misclassification rates and improved prediction accuracy for the embedded software system\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of a Multi-Strategy Classifier for an Embedded Software System
In this paper, a new classification model, RB2CBL, is proposed. Its structure and methodology are described. By cascading a rule-based (RB) model with two case-based learning (CBL) models, RB2CBL possesses the merits of both RB model and CBL model and restrains their drawbacks. In the RB2CBL model, the parameter optimization of the CBL models is essential, and the embedded genetic algorithm optimizer is used. In our case study, a dataset collected from initial releases of two large, Windowscopy-based embedded system applications, which were used primarily for customizing the configuration of wireless telecommunications products, is processed to investigate and evaluate the models. The results show that, by suitably choosing accuracy settings of the RB model, RB2CBL model outperforms the RB model alone without overfitting. In practice, the RB2CBL model effectively reduced the misclassification rates and improved prediction accuracy for the embedded software system