基于机器学习的乳腺癌分类算法的soc实现

AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil
{"title":"基于机器学习的乳腺癌分类算法的soc实现","authors":"AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil","doi":"10.1109/MECO58584.2023.10154967","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SoC-Oriented Implementation of Machine Learning Based Breast Cancer Classification Algorithm\",\"authors\":\"AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil\",\"doi\":\"10.1109/MECO58584.2023.10154967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10154967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10154967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)已经引起了医学成像领域研究人员的关注。许多研究人员利用CNN来检测乳腺癌。本研究提供了一种物联网(IoT)友好的CNN用于乳腺癌检测。为了加快产品上市速度,CNN的硬件实现采用了现场可编程门阵列(FPGA)上的深度学习处理单元(Deep-learning Processing Unit, DPU)。与传统的通用多核中央处理器(CPU)相比,该系统的CNN推理实现了1.6倍的加速系数和91.5%的能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SoC-Oriented Implementation of Machine Learning Based Breast Cancer Classification Algorithm
Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信