影响Fe-Ni-16% Cr奥氏体钢Frank部分位错析出NbC的因素

J. Silcock, K. W. Sidding, T. Fry
{"title":"影响Fe-Ni-16% Cr奥氏体钢Frank部分位错析出NbC的因素","authors":"J. Silcock, K. W. Sidding, T. Fry","doi":"10.1179/MSC.1970.4.1.29","DOIUrl":null,"url":null,"abstract":"AbstractThe effect of variations in alloy composition, quench rate, and deformation on the formation of FPP (Frank partial precipitation) has been studied by means of hardness measurements and electron microscopy. Solute concentration is the most important factor controlling the maximum area of FPP. The numbers of precipitate particles increase with dislocation density but the number per unit length of dislocation is generally lower the higher is the dislocation density. The efficiency of nucleation by a dislocation is therefore not increased by the prior cold work and this is consistent with nucleation by climbed loops. The free-vacancy profile near grain boundaries is used to explain the FPP-free zone (PFZ) width, and this is controlled by the rate of precipitation. Silicon additions accelerate the nucleation of NbC and promote FPP formation.","PeriodicalId":103313,"journal":{"name":"Metal Science Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Factors Affecting the Precipitation of NbC on Frank Partial Dislocations in Fe–Ni–16% Cr Austenitic Steels\",\"authors\":\"J. Silcock, K. W. Sidding, T. Fry\",\"doi\":\"10.1179/MSC.1970.4.1.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe effect of variations in alloy composition, quench rate, and deformation on the formation of FPP (Frank partial precipitation) has been studied by means of hardness measurements and electron microscopy. Solute concentration is the most important factor controlling the maximum area of FPP. The numbers of precipitate particles increase with dislocation density but the number per unit length of dislocation is generally lower the higher is the dislocation density. The efficiency of nucleation by a dislocation is therefore not increased by the prior cold work and this is consistent with nucleation by climbed loops. The free-vacancy profile near grain boundaries is used to explain the FPP-free zone (PFZ) width, and this is controlled by the rate of precipitation. Silicon additions accelerate the nucleation of NbC and promote FPP formation.\",\"PeriodicalId\":103313,\"journal\":{\"name\":\"Metal Science Journal\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/MSC.1970.4.1.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/MSC.1970.4.1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要采用硬度测定和电子显微镜研究了合金成分、淬火速率和变形对FPP (Frank partial precipitation)形成的影响。溶质浓度是控制FPP最大面积的最重要因素。随着位错密度的增大,析出相数量增加,但位错密度越大,单位长度位错数量越少。位错成核的效率因此不会因先前的冷加工而增加,这与爬升环成核是一致的。晶界附近的自由空位分布用来解释PFZ宽度,这是由析出速率控制的。硅的加入加速了NbC的成核,促进了FPP的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factors Affecting the Precipitation of NbC on Frank Partial Dislocations in Fe–Ni–16% Cr Austenitic Steels
AbstractThe effect of variations in alloy composition, quench rate, and deformation on the formation of FPP (Frank partial precipitation) has been studied by means of hardness measurements and electron microscopy. Solute concentration is the most important factor controlling the maximum area of FPP. The numbers of precipitate particles increase with dislocation density but the number per unit length of dislocation is generally lower the higher is the dislocation density. The efficiency of nucleation by a dislocation is therefore not increased by the prior cold work and this is consistent with nucleation by climbed loops. The free-vacancy profile near grain boundaries is used to explain the FPP-free zone (PFZ) width, and this is controlled by the rate of precipitation. Silicon additions accelerate the nucleation of NbC and promote FPP formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信