Yi-Feng Kao, Yi-Hsing Chien, I. Li, Wei-Yen Wang, Tsu-Tian Lee
{"title":"轮式移动机器人自适应动态控制器的设计与实现","authors":"Yi-Feng Kao, Yi-Hsing Chien, I. Li, Wei-Yen Wang, Tsu-Tian Lee","doi":"10.1109/ICSSE.2013.6614658","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid intelligent algorithm for path planning and trajectory-tracking control of a wheeled mobile robot (WMR). By using the proposed controller, the WMR can successfully finish the object of trajectory-tracking. First of all, we use D* Lite algorithm to determine the shortest path between the initial position and the destination position for the WMR. Then by using the proposed controller, the WMR can move along the path and arrive at the destination successfully. The controller is divided in two parts, which are kinematic controller and dynamic controller. The asymptotic stability of both kinematic and dynamic controllers is proven by Lyapunov theory. Finally, experiments show that this method can achieve good results.","PeriodicalId":124317,"journal":{"name":"2013 International Conference on System Science and Engineering (ICSSE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design and implementation of adaptive dynamic controllers for wheeled mobile robots\",\"authors\":\"Yi-Feng Kao, Yi-Hsing Chien, I. Li, Wei-Yen Wang, Tsu-Tian Lee\",\"doi\":\"10.1109/ICSSE.2013.6614658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid intelligent algorithm for path planning and trajectory-tracking control of a wheeled mobile robot (WMR). By using the proposed controller, the WMR can successfully finish the object of trajectory-tracking. First of all, we use D* Lite algorithm to determine the shortest path between the initial position and the destination position for the WMR. Then by using the proposed controller, the WMR can move along the path and arrive at the destination successfully. The controller is divided in two parts, which are kinematic controller and dynamic controller. The asymptotic stability of both kinematic and dynamic controllers is proven by Lyapunov theory. Finally, experiments show that this method can achieve good results.\",\"PeriodicalId\":124317,\"journal\":{\"name\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2013.6614658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2013.6614658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of adaptive dynamic controllers for wheeled mobile robots
This paper presents a hybrid intelligent algorithm for path planning and trajectory-tracking control of a wheeled mobile robot (WMR). By using the proposed controller, the WMR can successfully finish the object of trajectory-tracking. First of all, we use D* Lite algorithm to determine the shortest path between the initial position and the destination position for the WMR. Then by using the proposed controller, the WMR can move along the path and arrive at the destination successfully. The controller is divided in two parts, which are kinematic controller and dynamic controller. The asymptotic stability of both kinematic and dynamic controllers is proven by Lyapunov theory. Finally, experiments show that this method can achieve good results.