Farhood Negin, Michal Koperski, C. Crispim, F. Brémond, S. Coşar, Konstantinos Avgerinakis
{"title":"一个用于在线识别现实世界中日常生活活动的混合框架","authors":"Farhood Negin, Michal Koperski, C. Crispim, F. Brémond, S. Coşar, Konstantinos Avgerinakis","doi":"10.1109/AVSS.2016.7738021","DOIUrl":null,"url":null,"abstract":"Many supervised approaches report state-of-the-art results for recognizing short-term actions in manually clipped videos by utilizing fine body motion information. The main downside of these approaches is that they are not applicable in real world settings. The challenge is different when it comes to unstructured scenes and long-term videos. Unsupervised approaches have been used to model the long-term activities but the main pitfall is their limitation to handle subtle differences between similar activities since they mostly use global motion information. In this paper, we present a hybrid approach for long-term human activity recognition with more precise recognition of activities compared to unsupervised approaches. It enables processing of long-term videos by automatically clipping and performing online recognition. The performance of our approach has been tested on two Activities of Daily Living (ADL) datasets. Experimental results are promising compared to existing approaches.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A hybrid framework for online recognition of activities of daily living in real-world settings\",\"authors\":\"Farhood Negin, Michal Koperski, C. Crispim, F. Brémond, S. Coşar, Konstantinos Avgerinakis\",\"doi\":\"10.1109/AVSS.2016.7738021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many supervised approaches report state-of-the-art results for recognizing short-term actions in manually clipped videos by utilizing fine body motion information. The main downside of these approaches is that they are not applicable in real world settings. The challenge is different when it comes to unstructured scenes and long-term videos. Unsupervised approaches have been used to model the long-term activities but the main pitfall is their limitation to handle subtle differences between similar activities since they mostly use global motion information. In this paper, we present a hybrid approach for long-term human activity recognition with more precise recognition of activities compared to unsupervised approaches. It enables processing of long-term videos by automatically clipping and performing online recognition. The performance of our approach has been tested on two Activities of Daily Living (ADL) datasets. Experimental results are promising compared to existing approaches.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid framework for online recognition of activities of daily living in real-world settings
Many supervised approaches report state-of-the-art results for recognizing short-term actions in manually clipped videos by utilizing fine body motion information. The main downside of these approaches is that they are not applicable in real world settings. The challenge is different when it comes to unstructured scenes and long-term videos. Unsupervised approaches have been used to model the long-term activities but the main pitfall is their limitation to handle subtle differences between similar activities since they mostly use global motion information. In this paper, we present a hybrid approach for long-term human activity recognition with more precise recognition of activities compared to unsupervised approaches. It enables processing of long-term videos by automatically clipping and performing online recognition. The performance of our approach has been tested on two Activities of Daily Living (ADL) datasets. Experimental results are promising compared to existing approaches.