基于长短期记忆神经网络的菲律宾三宝颜半岛新冠肺炎感染病例时间序列分析

Urbano B. Patayon
{"title":"基于长短期记忆神经网络的菲律宾三宝颜半岛新冠肺炎感染病例时间序列分析","authors":"Urbano B. Patayon","doi":"10.1109/ic2ie53219.2021.9649041","DOIUrl":null,"url":null,"abstract":"Infectious disease outbreaks, such as COVID-19 pandemics, exhibit patterns that can be described by the dynamics of a mathematical model This study seeks to explore the use of LSTM in order to develop models that will capture the non-linear dynamic changes of COVID-19 cases in Zamboanga Peninsula. The study uses 436 data points where the latest timestamp for the dataset is on May 29, 2021 and the oldest is on March 20, 2020. These data are taken from the DOH repositories and revalidated using the data from the DOH Regional Office. The training and testing phase results show that among the different LSTM variants, convLSTM trained using Adam and RMSProp attained the smallest RMSE result of 42.34 and 43.67 and a correlation coefficient of 0.94 0.93, respectively. ConvLSTM, when trained with Adam and RMSProp, produces the best results, as evidenced by the shortest RMSE and highest correlation coefficient. Results revealed that convLSTM appears to be a viable choice for modeling the time series of the COVID 19 infected cases in Zamboanga Peninsula Region in compared with the different variants of LSTM.","PeriodicalId":178443,"journal":{"name":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time Series Analysis of Infected COVID-19 Cases in the Zamboanga Peninsula, Philippines using Long Short-Term Memory Neural Networks\",\"authors\":\"Urbano B. Patayon\",\"doi\":\"10.1109/ic2ie53219.2021.9649041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infectious disease outbreaks, such as COVID-19 pandemics, exhibit patterns that can be described by the dynamics of a mathematical model This study seeks to explore the use of LSTM in order to develop models that will capture the non-linear dynamic changes of COVID-19 cases in Zamboanga Peninsula. The study uses 436 data points where the latest timestamp for the dataset is on May 29, 2021 and the oldest is on March 20, 2020. These data are taken from the DOH repositories and revalidated using the data from the DOH Regional Office. The training and testing phase results show that among the different LSTM variants, convLSTM trained using Adam and RMSProp attained the smallest RMSE result of 42.34 and 43.67 and a correlation coefficient of 0.94 0.93, respectively. ConvLSTM, when trained with Adam and RMSProp, produces the best results, as evidenced by the shortest RMSE and highest correlation coefficient. Results revealed that convLSTM appears to be a viable choice for modeling the time series of the COVID 19 infected cases in Zamboanga Peninsula Region in compared with the different variants of LSTM.\",\"PeriodicalId\":178443,\"journal\":{\"name\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ic2ie53219.2021.9649041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ic2ie53219.2021.9649041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传染病暴发,如COVID-19大流行,表现出可以用数学模型动态描述的模式。本研究旨在探索LSTM的使用,以开发能够捕捉三宝鄢半岛COVID-19病例非线性动态变化的模型。该研究使用了436个数据点,其中数据集的时间戳最晚是在2021年5月29日,最老的是在2020年3月20日。这些数据来自卫生部存储库,并使用卫生部区域办公室的数据重新验证。训练和测试阶段的结果表明,在不同的LSTM变体中,使用Adam和RMSProp训练的convLSTM的RMSE结果最小,分别为42.34和43.67,相关系数分别为0.94和0.93。当使用Adam和RMSProp进行训练时,ConvLSTM产生了最好的结果,RMSE最短,相关系数最高。结果表明,与LSTM的不同变体相比,convLSTM是建立三宝颜半岛地区COVID - 19感染病例时间序列模型的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Analysis of Infected COVID-19 Cases in the Zamboanga Peninsula, Philippines using Long Short-Term Memory Neural Networks
Infectious disease outbreaks, such as COVID-19 pandemics, exhibit patterns that can be described by the dynamics of a mathematical model This study seeks to explore the use of LSTM in order to develop models that will capture the non-linear dynamic changes of COVID-19 cases in Zamboanga Peninsula. The study uses 436 data points where the latest timestamp for the dataset is on May 29, 2021 and the oldest is on March 20, 2020. These data are taken from the DOH repositories and revalidated using the data from the DOH Regional Office. The training and testing phase results show that among the different LSTM variants, convLSTM trained using Adam and RMSProp attained the smallest RMSE result of 42.34 and 43.67 and a correlation coefficient of 0.94 0.93, respectively. ConvLSTM, when trained with Adam and RMSProp, produces the best results, as evidenced by the shortest RMSE and highest correlation coefficient. Results revealed that convLSTM appears to be a viable choice for modeling the time series of the COVID 19 infected cases in Zamboanga Peninsula Region in compared with the different variants of LSTM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信