非线性时间序列预测的鲁棒Jordan网络

Q. Song
{"title":"非线性时间序列预测的鲁棒Jordan网络","authors":"Q. Song","doi":"10.1109/IJCNN.2011.6033550","DOIUrl":null,"url":null,"abstract":"We propose a robust initialization of Jordan network with recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of Jordan network with recurrent sensitivity and weight convergence analysis to obtain a tradeoff between training and testing errors. In addition to use classical techniques of the adaptive learning rate and adaptive dead zone, RIJNRCL uses a recurrent constrained parameter matrix to switch off excessive contribution of the hidden layer neurons based on weight convergence and stability conditions of the the multilayered RNNs.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Jordan network for nonlinear time series prediction\",\"authors\":\"Q. Song\",\"doi\":\"10.1109/IJCNN.2011.6033550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust initialization of Jordan network with recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of Jordan network with recurrent sensitivity and weight convergence analysis to obtain a tradeoff between training and testing errors. In addition to use classical techniques of the adaptive learning rate and adaptive dead zone, RIJNRCL uses a recurrent constrained parameter matrix to switch off excessive contribution of the hidden layer neurons based on weight convergence and stability conditions of the the multilayered RNNs.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对多层递归神经网络(rnn),提出了一种基于递归约束学习(RIJNRCL)算法的Jordan网络鲁棒初始化算法。该算法基于Jordan网络的约束学习概念,结合递归灵敏度和权值收敛分析,在训练误差和测试误差之间取得平衡。除了使用经典的自适应学习率和自适应死区技术外,RIJNRCL基于多层rnn的权收敛性和稳定性条件,使用循环约束参数矩阵来关闭隐藏层神经元的过度贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Jordan network for nonlinear time series prediction
We propose a robust initialization of Jordan network with recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of Jordan network with recurrent sensitivity and weight convergence analysis to obtain a tradeoff between training and testing errors. In addition to use classical techniques of the adaptive learning rate and adaptive dead zone, RIJNRCL uses a recurrent constrained parameter matrix to switch off excessive contribution of the hidden layer neurons based on weight convergence and stability conditions of the the multilayered RNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信