储能与可再生分布式发电的联合分配方法

V. Kalkhambkar, R. Kumar, R. Bhakar
{"title":"储能与可再生分布式发电的联合分配方法","authors":"V. Kalkhambkar, R. Kumar, R. Bhakar","doi":"10.1109/ICRAIE.2016.7939471","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for joint optimal allocation of energy storage (ES) and renewable distributed generation (RDG) for energy loss minimization. The paper also justifies the necessity of joint optimal allocation of ES and RDG. All possible sixteen combinations of design variables of RDG and ES are analyzed for the joint optimal allocation. The paper proposes a probabilistic generation model for solar DG and wind DG. This generation model and IEEE-RTS based load model are integrated into an optimal power flow along with energy storage. The non-linear constrained optimization problem is solved by robust and high-performance metaheuristic, symbiotic organisms search (SOS) optimization. Case studies are performed on a typical 34 - bus test system using MATLAB®","PeriodicalId":400935,"journal":{"name":"2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Methodology for joint allocation of energy storage and renewable distributed generation\",\"authors\":\"V. Kalkhambkar, R. Kumar, R. Bhakar\",\"doi\":\"10.1109/ICRAIE.2016.7939471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for joint optimal allocation of energy storage (ES) and renewable distributed generation (RDG) for energy loss minimization. The paper also justifies the necessity of joint optimal allocation of ES and RDG. All possible sixteen combinations of design variables of RDG and ES are analyzed for the joint optimal allocation. The paper proposes a probabilistic generation model for solar DG and wind DG. This generation model and IEEE-RTS based load model are integrated into an optimal power flow along with energy storage. The non-linear constrained optimization problem is solved by robust and high-performance metaheuristic, symbiotic organisms search (SOS) optimization. Case studies are performed on a typical 34 - bus test system using MATLAB®\",\"PeriodicalId\":400935,\"journal\":{\"name\":\"2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAIE.2016.7939471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAIE.2016.7939471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种以能量损失最小为目标的储能系统和可再生分布式发电系统联合优化配置方法。本文还论证了ES和RDG联合优化配置的必要性。分析了RDG和ES所有可能的16种设计变量组合,以进行联合优化配置。本文提出了太阳能发电和风能发电的概率发电模型。将该发电模型与基于IEEE-RTS的负荷模型与储能系统集成为最优潮流。非线性约束优化问题采用鲁棒、高性能的元启发式共生生物搜索(SOS)优化算法求解。用MATLAB®对典型的34总线测试系统进行了案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology for joint allocation of energy storage and renewable distributed generation
This paper presents a methodology for joint optimal allocation of energy storage (ES) and renewable distributed generation (RDG) for energy loss minimization. The paper also justifies the necessity of joint optimal allocation of ES and RDG. All possible sixteen combinations of design variables of RDG and ES are analyzed for the joint optimal allocation. The paper proposes a probabilistic generation model for solar DG and wind DG. This generation model and IEEE-RTS based load model are integrated into an optimal power flow along with energy storage. The non-linear constrained optimization problem is solved by robust and high-performance metaheuristic, symbiotic organisms search (SOS) optimization. Case studies are performed on a typical 34 - bus test system using MATLAB®
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信