基于一类支持向量机的高光谱图像聚类有效性分割

G. Bilgin, S. Erturk, Tulay Yuldirim
{"title":"基于一类支持向量机的高光谱图像聚类有效性分割","authors":"G. Bilgin, S. Erturk, Tulay Yuldirim","doi":"10.1109/SIU.2009.5136522","DOIUrl":null,"url":null,"abstract":"In this paper, a novel cluster validation method based on one-class support vector machines (OC-SVM )is presented. Also it is proposed to segment hyperspectral images with subtractive clustering accompanied by phase correlation. The proposed cluster validity measure is based on the power of spectral discrimination (PWSD) measure and utilizes the advantage of the inherited cluster contour definition feature of OC-SVM. Basically this method provides a solution to the estimation of the correct number of clusters which is an important problem in hyperspectral image segmentation.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-class support vector machines based cluster validity in the segmentation of hyperspectral images\",\"authors\":\"G. Bilgin, S. Erturk, Tulay Yuldirim\",\"doi\":\"10.1109/SIU.2009.5136522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel cluster validation method based on one-class support vector machines (OC-SVM )is presented. Also it is proposed to segment hyperspectral images with subtractive clustering accompanied by phase correlation. The proposed cluster validity measure is based on the power of spectral discrimination (PWSD) measure and utilizes the advantage of the inherited cluster contour definition feature of OC-SVM. Basically this method provides a solution to the estimation of the correct number of clusters which is an important problem in hyperspectral image segmentation.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于一类支持向量机的聚类验证方法。此外,还提出了相位相关的相减聚类分割高光谱图像的方法。本文提出的聚类有效性度量是基于谱辨别功率(PWSD)度量,并利用了OC-SVM继承的聚类轮廓定义特征的优势。该方法基本上解决了高光谱图像分割中的一个重要问题——聚类的正确数目估计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-class support vector machines based cluster validity in the segmentation of hyperspectral images
In this paper, a novel cluster validation method based on one-class support vector machines (OC-SVM )is presented. Also it is proposed to segment hyperspectral images with subtractive clustering accompanied by phase correlation. The proposed cluster validity measure is based on the power of spectral discrimination (PWSD) measure and utilizes the advantage of the inherited cluster contour definition feature of OC-SVM. Basically this method provides a solution to the estimation of the correct number of clusters which is an important problem in hyperspectral image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信