在线分散式Frank-Wolfe:从理论约束到智能建筑的应用

Angan Mitra, K. Nguyen, T. Nguyen, D. Trystram, P. Youssef
{"title":"在线分散式Frank-Wolfe:从理论约束到智能建筑的应用","authors":"Angan Mitra, K. Nguyen, T. Nguyen, D. Trystram, P. Youssef","doi":"10.48550/arXiv.2208.00522","DOIUrl":null,"url":null,"abstract":"The design of decentralized learning algorithms is important in the fast-growing world in which data are distributed over participants with limited local computation resources and communication. In this direction, we propose an online algorithm minimizing non-convex loss functions aggregated from individual data/models distributed over a network. We provide the theoretical performance guarantee of our algorithm and demonstrate its utility on a real life smart building.","PeriodicalId":140428,"journal":{"name":"Global Internet of Things Summit","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Decentralized Frank-Wolfe: From theoretical bound to applications in smart-building\",\"authors\":\"Angan Mitra, K. Nguyen, T. Nguyen, D. Trystram, P. Youssef\",\"doi\":\"10.48550/arXiv.2208.00522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of decentralized learning algorithms is important in the fast-growing world in which data are distributed over participants with limited local computation resources and communication. In this direction, we propose an online algorithm minimizing non-convex loss functions aggregated from individual data/models distributed over a network. We provide the theoretical performance guarantee of our algorithm and demonstrate its utility on a real life smart building.\",\"PeriodicalId\":140428,\"journal\":{\"name\":\"Global Internet of Things Summit\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Internet of Things Summit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.00522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Internet of Things Summit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.00522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式学习算法的设计在快速发展的世界中非常重要,在这个世界中,数据分布在参与者之间,而本地计算资源和通信有限。在这个方向上,我们提出了一种在线算法,最小化分布在网络上的单个数据/模型聚合的非凸损失函数。给出了算法的理论性能保证,并在实际智能建筑中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Decentralized Frank-Wolfe: From theoretical bound to applications in smart-building
The design of decentralized learning algorithms is important in the fast-growing world in which data are distributed over participants with limited local computation resources and communication. In this direction, we propose an online algorithm minimizing non-convex loss functions aggregated from individual data/models distributed over a network. We provide the theoretical performance guarantee of our algorithm and demonstrate its utility on a real life smart building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信