基于交通视频的车辆跟踪和速度估计

Shuai Hua, M. Kapoor, D. Anastasiu
{"title":"基于交通视频的车辆跟踪和速度估计","authors":"Shuai Hua, M. Kapoor, D. Anastasiu","doi":"10.1109/CVPRW.2018.00028","DOIUrl":null,"url":null,"abstract":"The rapid recent advancements in the computation ability of everyday computers have made it possible to widely apply deep learning methods to the analysis of traffic surveillance videos. Traffic flow prediction, anomaly detection, vehicle re-identification, and vehicle tracking are basic components in traffic analysis. Among these applications, traffic flow prediction, or vehicle speed estimation, is one of the most important research topics of recent years. Good solutions to this problem could prevent traffic collisions and help improve road planning by better estimating transit demand. In the 2018 NVIDIA AI City Challenge, we combine modern deep learning models with classic computer vision approaches to propose an efficient way to predict vehicle speed. In this paper, we introduce some state-of-the-art approaches in vehicle speed estimation, vehicle detection, and object tracking, as well as our solution for Track 1 of the Challenge.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Vehicle Tracking and Speed Estimation from Traffic Videos\",\"authors\":\"Shuai Hua, M. Kapoor, D. Anastasiu\",\"doi\":\"10.1109/CVPRW.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid recent advancements in the computation ability of everyday computers have made it possible to widely apply deep learning methods to the analysis of traffic surveillance videos. Traffic flow prediction, anomaly detection, vehicle re-identification, and vehicle tracking are basic components in traffic analysis. Among these applications, traffic flow prediction, or vehicle speed estimation, is one of the most important research topics of recent years. Good solutions to this problem could prevent traffic collisions and help improve road planning by better estimating transit demand. In the 2018 NVIDIA AI City Challenge, we combine modern deep learning models with classic computer vision approaches to propose an efficient way to predict vehicle speed. In this paper, we introduce some state-of-the-art approaches in vehicle speed estimation, vehicle detection, and object tracking, as well as our solution for Track 1 of the Challenge.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

近年来,随着日常计算机计算能力的迅速提高,深度学习方法在交通监控视频分析中的广泛应用成为可能。交通流预测、异常检测、车辆再识别和车辆跟踪是交通分析的基本组成部分。在这些应用中,交通流预测或车辆速度估计是近年来最重要的研究课题之一。解决这个问题的好办法可以防止交通碰撞,并通过更好地估计交通需求来帮助改善道路规划。在2018年NVIDIA AI城市挑战赛中,我们将现代深度学习模型与经典计算机视觉方法相结合,提出了一种有效的预测车辆速度的方法。在本文中,我们介绍了车辆速度估计、车辆检测和目标跟踪方面的一些最先进的方法,以及我们在挑战赛第1赛道上的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Tracking and Speed Estimation from Traffic Videos
The rapid recent advancements in the computation ability of everyday computers have made it possible to widely apply deep learning methods to the analysis of traffic surveillance videos. Traffic flow prediction, anomaly detection, vehicle re-identification, and vehicle tracking are basic components in traffic analysis. Among these applications, traffic flow prediction, or vehicle speed estimation, is one of the most important research topics of recent years. Good solutions to this problem could prevent traffic collisions and help improve road planning by better estimating transit demand. In the 2018 NVIDIA AI City Challenge, we combine modern deep learning models with classic computer vision approaches to propose an efficient way to predict vehicle speed. In this paper, we introduce some state-of-the-art approaches in vehicle speed estimation, vehicle detection, and object tracking, as well as our solution for Track 1 of the Challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信