直流串联电机的非线性状态估计:综述及一种新的调谐方法

Daniel Padierna Vanegas, Robinson S. Alvarez-Valle, Marıa Fernanda Villa Tamayo
{"title":"直流串联电机的非线性状态估计:综述及一种新的调谐方法","authors":"Daniel Padierna Vanegas, Robinson S. Alvarez-Valle, Marıa Fernanda Villa Tamayo","doi":"10.1109/CCAC.2019.8920856","DOIUrl":null,"url":null,"abstract":"This paper computes different non-linear estimation techniques for the state variables of a DC series motor. The measured variable is the rotor speed, and the estimated variable is the current. Adding a null dynamic, the load torque can be estimated too. Each estimator is based on mathematical structures found in the literature. It does a development and comparison among the extended Luenberger observer (ELO), the extended Kalman filter (EKF) and the extended sliding mode observer (ESMO). The last estimator is designed using the static poles assignment, and a non-static pole assignment is proposed with the Ackerman’s formula as a novel and easy method to recalculated the constants for the estimator in each iteration. Each estimator is simulated under sensor noise, plant-model mismatch, changes in the input and disturbances. The simulation results are contrasted using integral square error (ISE) and making conclusions about it.","PeriodicalId":184764,"journal":{"name":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear State Estimation of a DC Series Motor: A Review and a Novel Tuning Method\",\"authors\":\"Daniel Padierna Vanegas, Robinson S. Alvarez-Valle, Marıa Fernanda Villa Tamayo\",\"doi\":\"10.1109/CCAC.2019.8920856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper computes different non-linear estimation techniques for the state variables of a DC series motor. The measured variable is the rotor speed, and the estimated variable is the current. Adding a null dynamic, the load torque can be estimated too. Each estimator is based on mathematical structures found in the literature. It does a development and comparison among the extended Luenberger observer (ELO), the extended Kalman filter (EKF) and the extended sliding mode observer (ESMO). The last estimator is designed using the static poles assignment, and a non-static pole assignment is proposed with the Ackerman’s formula as a novel and easy method to recalculated the constants for the estimator in each iteration. Each estimator is simulated under sensor noise, plant-model mismatch, changes in the input and disturbances. The simulation results are contrasted using integral square error (ISE) and making conclusions about it.\",\"PeriodicalId\":184764,\"journal\":{\"name\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAC.2019.8920856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAC.2019.8920856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了直流串激电动机状态变量的非线性估计方法。被测变量为转子转速,估计变量为电流。加入一个零动态,也可以估计负载扭矩。每个估计器都基于文献中发现的数学结构。对扩展Luenberger观测器(ELO)、扩展Kalman滤波器(EKF)和扩展滑模观测器(ESMO)进行了发展和比较。最后一个估计器采用静态极点配置设计,并提出了一种新的非静态极点配置方法,利用Ackerman公式重新计算每次迭代中估计器的常数。每个估计器在传感器噪声、植物模型不匹配、输入变化和干扰下进行了仿真。利用积分平方误差(ISE)对仿真结果进行对比,并得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear State Estimation of a DC Series Motor: A Review and a Novel Tuning Method
This paper computes different non-linear estimation techniques for the state variables of a DC series motor. The measured variable is the rotor speed, and the estimated variable is the current. Adding a null dynamic, the load torque can be estimated too. Each estimator is based on mathematical structures found in the literature. It does a development and comparison among the extended Luenberger observer (ELO), the extended Kalman filter (EKF) and the extended sliding mode observer (ESMO). The last estimator is designed using the static poles assignment, and a non-static pole assignment is proposed with the Ackerman’s formula as a novel and easy method to recalculated the constants for the estimator in each iteration. Each estimator is simulated under sensor noise, plant-model mismatch, changes in the input and disturbances. The simulation results are contrasted using integral square error (ISE) and making conclusions about it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信