基于Bert -CNN-LSTM模型的案例预处理研究

Chuyue Zhang, Manchun Cai, Xiaofan Zhao
{"title":"基于Bert -CNN-LSTM模型的案例预处理研究","authors":"Chuyue Zhang, Manchun Cai, Xiaofan Zhao","doi":"10.1109/PDCAT46702.2019.00054","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the deep learning algorithm to preprocess the criminal case information. By extracting the characteristics of the brief case field, the missing content of other required field is plugged through model training. The experimental results show that the precision rate of CNN-LSTM model is 3% higher than that of LSTM-CNN model in text classification. After the Bert model is integrated, the precision rate, recall rate, and F value are all improved by 10%. To the best of our knowledge, this is the first time to use Bert model in preprocessing criminal case information.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Case Preprocessing Based on Bert -CNN-LSTM Model\",\"authors\":\"Chuyue Zhang, Manchun Cai, Xiaofan Zhao\",\"doi\":\"10.1109/PDCAT46702.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply the deep learning algorithm to preprocess the criminal case information. By extracting the characteristics of the brief case field, the missing content of other required field is plugged through model training. The experimental results show that the precision rate of CNN-LSTM model is 3% higher than that of LSTM-CNN model in text classification. After the Bert model is integrated, the precision rate, recall rate, and F value are all improved by 10%. To the best of our knowledge, this is the first time to use Bert model in preprocessing criminal case information.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将深度学习算法应用于刑事案件信息的预处理。通过提取简要案例字段的特征,通过模型训练来填补其他必要字段的缺失内容。实验结果表明,在文本分类中,CNN-LSTM模型的准确率比LSTM-CNN模型高出3%。整合Bert模型后,准确率、召回率和F值都提高了10%。据我们所知,这是第一次使用Bert模型对刑事案件信息进行预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Case Preprocessing Based on Bert -CNN-LSTM Model
In this paper, we apply the deep learning algorithm to preprocess the criminal case information. By extracting the characteristics of the brief case field, the missing content of other required field is plugged through model training. The experimental results show that the precision rate of CNN-LSTM model is 3% higher than that of LSTM-CNN model in text classification. After the Bert model is integrated, the precision rate, recall rate, and F value are all improved by 10%. To the best of our knowledge, this is the first time to use Bert model in preprocessing criminal case information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信