{"title":"相互作用对象系统的一般平均场收敛结果","authors":"J. Boudec, D. McDonald, Jochen Mundinger","doi":"10.1109/QEST.2007.3","DOIUrl":null,"url":null,"abstract":"We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the \"mean field\") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"A Generic Mean Field Convergence Result for Systems of Interacting Objects\",\"authors\":\"J. Boudec, D. McDonald, Jochen Mundinger\",\"doi\":\"10.1109/QEST.2007.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the \\\"mean field\\\") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.\",\"PeriodicalId\":249627,\"journal\":{\"name\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QEST.2007.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Generic Mean Field Convergence Result for Systems of Interacting Objects
We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the "mean field") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.