亨利·赫尔森会见了其他大人物——一个简短的调查

A. Defant, I. Schoolmann
{"title":"亨利·赫尔森会见了其他大人物——一个简短的调查","authors":"A. Defant, I. Schoolmann","doi":"10.3318/pria.2019.119.08","DOIUrl":null,"url":null,"abstract":"A theorem of Henry Helson shows that for every ordinary Dirichlet series $\\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\\sum a_n \\chi(n) n^{-s}$, where $\\chi: \\mathbb{N} \\to \\mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Henry Helson meets other big shots — a brief survey\",\"authors\":\"A. Defant, I. Schoolmann\",\"doi\":\"10.3318/pria.2019.119.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theorem of Henry Helson shows that for every ordinary Dirichlet series $\\\\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\\\\sum a_n \\\\chi(n) n^{-s}$, where $\\\\chi: \\\\mathbb{N} \\\\to \\\\mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2019.119.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2019.119.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

亨利·赫尔森的一个定理表明,对于每一个系数的平方可和序列$(a_n)$的普通狄利克雷级数$\sum a_n n^{-s}$,几乎所有的垂直极限$\sum a_n \chi(n) n^{-s}$,其中$\chi: \mathbb{N} \to \mathbb{T}$是一个完全相乘的算术函数,收敛于右半平面。我们调查了最近在Dirichlet级数的Hardy空间中对这一结果的改进和扩展,并将其与Bohr, Banach, Carleson-Hunt, Cesaro, Hardy- littlewood, Hardy- riesz, Menchoff-Rademacher和Riemann的一些经典工作联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Henry Helson meets other big shots — a brief survey
A theorem of Henry Helson shows that for every ordinary Dirichlet series $\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\sum a_n \chi(n) n^{-s}$, where $\chi: \mathbb{N} \to \mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信