{"title":"亨利·赫尔森会见了其他大人物——一个简短的调查","authors":"A. Defant, I. Schoolmann","doi":"10.3318/pria.2019.119.08","DOIUrl":null,"url":null,"abstract":"A theorem of Henry Helson shows that for every ordinary Dirichlet series $\\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\\sum a_n \\chi(n) n^{-s}$, where $\\chi: \\mathbb{N} \\to \\mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Henry Helson meets other big shots — a brief survey\",\"authors\":\"A. Defant, I. Schoolmann\",\"doi\":\"10.3318/pria.2019.119.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theorem of Henry Helson shows that for every ordinary Dirichlet series $\\\\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\\\\sum a_n \\\\chi(n) n^{-s}$, where $\\\\chi: \\\\mathbb{N} \\\\to \\\\mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2019.119.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2019.119.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Henry Helson meets other big shots — a brief survey
A theorem of Henry Helson shows that for every ordinary Dirichlet series $\sum a_n n^{-s}$ with a square summable sequence $(a_n)$ of coefficients, almost all vertical limits $\sum a_n \chi(n) n^{-s}$, where $\chi: \mathbb{N} \to \mathbb{T}$ is a completely multiplicative arithmetic function, converge on the right half-plane. We survey on recent improvements and extensions of this result within Hardy spaces of Dirichlet series -- relating it with some classical work of Bohr, Banach, Carleson-Hunt, Cesaro, Hardy-Littlewood, Hardy-Riesz, Menchoff-Rademacher, and Riemann.