多值Kleenean函数和单值函数枚举的复杂性

Y. Hata, Masaharu Yuhara, F. Miyawaki, K. Yamato
{"title":"多值Kleenean函数和单值函数枚举的复杂性","authors":"Y. Hata, Masaharu Yuhara, F. Miyawaki, K. Yamato","doi":"10.1109/ISMVL.1991.130705","DOIUrl":null,"url":null,"abstract":"Multiple-valued Kleenean functions are represented by multiple-valued AND, OR, NOT, variables and constants. In their previous work (see proc. of 20th Int. Symp. Multiple Valued Logic, IEEE, p.410-17, 1990), the authors pointed out that both mapping from Kleenean functions to some (3,p)-functions and mapping from unate functions to some (2,p)-functions are bijections. In this paper, by using the above relations, 3-up-to-7 valued Kleenean functions of 3-or-less variables are enumerated on a computer. Their exact numbers are tabulated. The results show that as p becomes larger, the number of p-valued Kleenean functions increases stepwise, and that of p-valued unate functions increases smoothly.<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the complexity of enumerations for multiple-valued Kleenean functions and unate functions\",\"authors\":\"Y. Hata, Masaharu Yuhara, F. Miyawaki, K. Yamato\",\"doi\":\"10.1109/ISMVL.1991.130705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple-valued Kleenean functions are represented by multiple-valued AND, OR, NOT, variables and constants. In their previous work (see proc. of 20th Int. Symp. Multiple Valued Logic, IEEE, p.410-17, 1990), the authors pointed out that both mapping from Kleenean functions to some (3,p)-functions and mapping from unate functions to some (2,p)-functions are bijections. In this paper, by using the above relations, 3-up-to-7 valued Kleenean functions of 3-or-less variables are enumerated on a computer. Their exact numbers are tabulated. The results show that as p becomes larger, the number of p-valued Kleenean functions increases stepwise, and that of p-valued unate functions increases smoothly.<<ETX>>\",\"PeriodicalId\":127974,\"journal\":{\"name\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1991.130705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多值Kleenean函数由多值AND、OR、NOT、变量和常量表示。在他们以前的工作中(见第20卷附则)。计算机协会。在此基础上,作者指出Kleenean函数到某些(3,p)-函数的映射和单函数到某些(2,p)-函数的映射都是双射。本文利用上述关系,在计算机上列举了3 ~ 7值的3变量或3变量以下的Kleenean函数。他们的确切人数已列在表格中。结果表明,随着p的增大,p值Kleenean函数的数量逐步增加,p值unate函数的数量平稳增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of enumerations for multiple-valued Kleenean functions and unate functions
Multiple-valued Kleenean functions are represented by multiple-valued AND, OR, NOT, variables and constants. In their previous work (see proc. of 20th Int. Symp. Multiple Valued Logic, IEEE, p.410-17, 1990), the authors pointed out that both mapping from Kleenean functions to some (3,p)-functions and mapping from unate functions to some (2,p)-functions are bijections. In this paper, by using the above relations, 3-up-to-7 valued Kleenean functions of 3-or-less variables are enumerated on a computer. Their exact numbers are tabulated. The results show that as p becomes larger, the number of p-valued Kleenean functions increases stepwise, and that of p-valued unate functions increases smoothly.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信