环境经济调度的自适应多目标差分进化算法

Zhong Lin, T. Chiang, Chen-Yu Lee
{"title":"环境经济调度的自适应多目标差分进化算法","authors":"Zhong Lin, T. Chiang, Chen-Yu Lee","doi":"10.1109/IIAI-AAI.2017.26","DOIUrl":null,"url":null,"abstract":"The environmental/economic dispatch (EED) problem aims to allocate power generation units to meet power demand and minimize both fuel cost and emission of gaseous pollutants simultaneously. In this paper we apply differential evolution (DE) to solve EED. Two parameters of DE, CR and F, have significant influence on its performance. We control the parameter values by four mechanisms. Performance of the proposed algorithms is verified by comparing with the state of the arts using four public test systems.","PeriodicalId":281712,"journal":{"name":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Multiobjective Differential Evolution Algorithms for Environmental/Economic Dispatch\",\"authors\":\"Zhong Lin, T. Chiang, Chen-Yu Lee\",\"doi\":\"10.1109/IIAI-AAI.2017.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental/economic dispatch (EED) problem aims to allocate power generation units to meet power demand and minimize both fuel cost and emission of gaseous pollutants simultaneously. In this paper we apply differential evolution (DE) to solve EED. Two parameters of DE, CR and F, have significant influence on its performance. We control the parameter values by four mechanisms. Performance of the proposed algorithms is verified by comparing with the state of the arts using four public test systems.\",\"PeriodicalId\":281712,\"journal\":{\"name\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2017.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2017.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

环境/经济调度(EED)问题旨在分配发电机组以满足电力需求,同时使燃料成本和气体污染物排放最小化。本文采用差分进化(DE)方法来求解EED问题。DE、CR和F两个参数对其性能有显著影响。我们通过四种机制控制参数值。通过与四个公共测试系统的最新技术进行比较,验证了所提出算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Multiobjective Differential Evolution Algorithms for Environmental/Economic Dispatch
The environmental/economic dispatch (EED) problem aims to allocate power generation units to meet power demand and minimize both fuel cost and emission of gaseous pollutants simultaneously. In this paper we apply differential evolution (DE) to solve EED. Two parameters of DE, CR and F, have significant influence on its performance. We control the parameter values by four mechanisms. Performance of the proposed algorithms is verified by comparing with the state of the arts using four public test systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信