基于直方图移位和非局部均值的大容量可逆数据隐藏

V. Conotter, G. Boato, M. Carli, K. Egiazarian
{"title":"基于直方图移位和非局部均值的大容量可逆数据隐藏","authors":"V. Conotter, G. Boato, M. Carli, K. Egiazarian","doi":"10.1109/LNLA.2009.5278392","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new reversible data hiding framework which applies prediction in the embedding procedure by suitably modifying the prediction errors and exploits non-local similarity in the prediction phase to estimate the to-be-predicted value. This results in a scheme which can be jointly used with different predictors and allows reaching high embedding capacity while preserving a high image quality. Extensive simulations demonstrate the effectiveness of the proposed approach.","PeriodicalId":231766,"journal":{"name":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High capacity reversible data hiding based on histogram shifting and non-local means\",\"authors\":\"V. Conotter, G. Boato, M. Carli, K. Egiazarian\",\"doi\":\"10.1109/LNLA.2009.5278392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new reversible data hiding framework which applies prediction in the embedding procedure by suitably modifying the prediction errors and exploits non-local similarity in the prediction phase to estimate the to-be-predicted value. This results in a scheme which can be jointly used with different predictors and allows reaching high embedding capacity while preserving a high image quality. Extensive simulations demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":231766,\"journal\":{\"name\":\"2009 International Workshop on Local and Non-Local Approximation in Image Processing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Local and Non-Local Approximation in Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LNLA.2009.5278392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LNLA.2009.5278392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的可逆数据隐藏框架,该框架通过适当修正预测误差,在嵌入过程中应用预测,并利用预测阶段的非局部相似度来估计待预测值。这使得该方案可以与不同的预测器联合使用,并允许在保持高图像质量的同时达到高嵌入容量。大量的仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High capacity reversible data hiding based on histogram shifting and non-local means
In this paper we propose a new reversible data hiding framework which applies prediction in the embedding procedure by suitably modifying the prediction errors and exploits non-local similarity in the prediction phase to estimate the to-be-predicted value. This results in a scheme which can be jointly used with different predictors and allows reaching high embedding capacity while preserving a high image quality. Extensive simulations demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信