{"title":"Nb3Sn线材jc -压缩应变性能评价","authors":"Y. Kubo, Hideji Naitoh, M. Hasegawa","doi":"10.2221/JCSJ.39.399","DOIUrl":null,"url":null,"abstract":"To clarify the Jc-compressive strain properties of Nb3Sn superconducting wires fabricated using the internal-tin process, an evaluation of the properties has been carried out by applying pre-compressive strain to the wires. The strain was induced by clothing the wires in stainless steel that has large thermal contraction and then subjecting the wires to a heat-treatment process. We succeeded in shifting the peak strain from 0.3% to 0.7- 0.8% and grasping the Jc-compressive strain properties. These experimental values agree well with the stress analysis results. We also examined the differences in Jc-strain properties including the compressive strain between internal-tin processed wires and bronze wires. As a result, it was found that Jc-strain properties are different between them; however when both wires are clothed in stainless steel, they show almost the similar strain-sensitivity. Using these data, the specification value on Jc for the strand wire of the ITER TF coils was examined. It was concluded that 9.7% higher Jc is needed for internal-tin processed wires as compared to bronze route Nb3Sn wires at T=4.2 K and B=12 T, assuming that both wires have the same Jc at T=6 K and B=11.8T.","PeriodicalId":285677,"journal":{"name":"Teion Kogaku (journal of The Cryogenic Society of Japan)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of Jc-compressive Strain Properties for Nb3Sn Wires\",\"authors\":\"Y. Kubo, Hideji Naitoh, M. Hasegawa\",\"doi\":\"10.2221/JCSJ.39.399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To clarify the Jc-compressive strain properties of Nb3Sn superconducting wires fabricated using the internal-tin process, an evaluation of the properties has been carried out by applying pre-compressive strain to the wires. The strain was induced by clothing the wires in stainless steel that has large thermal contraction and then subjecting the wires to a heat-treatment process. We succeeded in shifting the peak strain from 0.3% to 0.7- 0.8% and grasping the Jc-compressive strain properties. These experimental values agree well with the stress analysis results. We also examined the differences in Jc-strain properties including the compressive strain between internal-tin processed wires and bronze wires. As a result, it was found that Jc-strain properties are different between them; however when both wires are clothed in stainless steel, they show almost the similar strain-sensitivity. Using these data, the specification value on Jc for the strand wire of the ITER TF coils was examined. It was concluded that 9.7% higher Jc is needed for internal-tin processed wires as compared to bronze route Nb3Sn wires at T=4.2 K and B=12 T, assuming that both wires have the same Jc at T=6 K and B=11.8T.\",\"PeriodicalId\":285677,\"journal\":{\"name\":\"Teion Kogaku (journal of The Cryogenic Society of Japan)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teion Kogaku (journal of The Cryogenic Society of Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2221/JCSJ.39.399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teion Kogaku (journal of The Cryogenic Society of Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/JCSJ.39.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Jc-compressive Strain Properties for Nb3Sn Wires
To clarify the Jc-compressive strain properties of Nb3Sn superconducting wires fabricated using the internal-tin process, an evaluation of the properties has been carried out by applying pre-compressive strain to the wires. The strain was induced by clothing the wires in stainless steel that has large thermal contraction and then subjecting the wires to a heat-treatment process. We succeeded in shifting the peak strain from 0.3% to 0.7- 0.8% and grasping the Jc-compressive strain properties. These experimental values agree well with the stress analysis results. We also examined the differences in Jc-strain properties including the compressive strain between internal-tin processed wires and bronze wires. As a result, it was found that Jc-strain properties are different between them; however when both wires are clothed in stainless steel, they show almost the similar strain-sensitivity. Using these data, the specification value on Jc for the strand wire of the ITER TF coils was examined. It was concluded that 9.7% higher Jc is needed for internal-tin processed wires as compared to bronze route Nb3Sn wires at T=4.2 K and B=12 T, assuming that both wires have the same Jc at T=6 K and B=11.8T.