骨-生物材料界面的功能分析

R. Tuan
{"title":"骨-生物材料界面的功能分析","authors":"R. Tuan","doi":"10.1115/imece2000-2675","DOIUrl":null,"url":null,"abstract":"\n Proper function and long-term stability of orthopaedic implants depend on the intimate association between bone cells and the implant biomaterial, a process known as osseointegration. Understanding the processes responsible for the establishment and maintenance of a functional bone-biomaterial interface and how these processes may be enhanced is crucial to the rational design and optimization of prosthetic devices. We have utilized cellular, molecular, and high-resolution imaging approaches to analyze the mechanistic basis of bone-biomaterial interactions. Specifically, we have characterized the initial adhesion of osteoblasts in terms of kinetics and relationship to the surface topography and chemistry of the biomaterials, particularly the cobalt-chrome and titanium alloys commonly used to fabricate orthopaedic prostheses. Results from these studies indicate that the long-term performance of osteoblasts adherent to biomaterials is crucially dependent on the characteristics of the initial adhesion step. Furthermore, osteoactive factors such as members of the transforming growth factor-β superfamily, including TGF-β1 and BMP-2, significantly enhance osteoblast cell adhesion. The molecular components responsible for the adhesion process include extracellular matrix proteins (e.g. fibronectin and collagen type I) and their cognate membrane receptors, the integrins. Our recent studies reveal that specific downstream, intracellular signaling events are also activated as a result of osteoblast adhesion, and that these signaling events are coupled to signal transduction mechanisms mediating growth factor activity. These events in combination regulate the continued expression and maintenance of the osteoblastic phenotype of the adherent cells, resulting in matrix maturation and mineralization, hallmarks of the bony tissue. Our current efforts focus on defining the target molecular pathways responsible for bone cell functioning on biomaterials, and the identification of critical biological and material parameters to optimize long-term osteoblast function and interaction with orthopaedically relevant biomaterials. The information gathered from these studies should provide a rational basis for the design of optimal implant biomaterials. (Supported in part by the NIH and the Annenberg Foundation)","PeriodicalId":324509,"journal":{"name":"Materials: Book of Abstracts","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Analysis of Bone-Biomaterial Interface\",\"authors\":\"R. Tuan\",\"doi\":\"10.1115/imece2000-2675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Proper function and long-term stability of orthopaedic implants depend on the intimate association between bone cells and the implant biomaterial, a process known as osseointegration. Understanding the processes responsible for the establishment and maintenance of a functional bone-biomaterial interface and how these processes may be enhanced is crucial to the rational design and optimization of prosthetic devices. We have utilized cellular, molecular, and high-resolution imaging approaches to analyze the mechanistic basis of bone-biomaterial interactions. Specifically, we have characterized the initial adhesion of osteoblasts in terms of kinetics and relationship to the surface topography and chemistry of the biomaterials, particularly the cobalt-chrome and titanium alloys commonly used to fabricate orthopaedic prostheses. Results from these studies indicate that the long-term performance of osteoblasts adherent to biomaterials is crucially dependent on the characteristics of the initial adhesion step. Furthermore, osteoactive factors such as members of the transforming growth factor-β superfamily, including TGF-β1 and BMP-2, significantly enhance osteoblast cell adhesion. The molecular components responsible for the adhesion process include extracellular matrix proteins (e.g. fibronectin and collagen type I) and their cognate membrane receptors, the integrins. Our recent studies reveal that specific downstream, intracellular signaling events are also activated as a result of osteoblast adhesion, and that these signaling events are coupled to signal transduction mechanisms mediating growth factor activity. These events in combination regulate the continued expression and maintenance of the osteoblastic phenotype of the adherent cells, resulting in matrix maturation and mineralization, hallmarks of the bony tissue. Our current efforts focus on defining the target molecular pathways responsible for bone cell functioning on biomaterials, and the identification of critical biological and material parameters to optimize long-term osteoblast function and interaction with orthopaedically relevant biomaterials. The information gathered from these studies should provide a rational basis for the design of optimal implant biomaterials. (Supported in part by the NIH and the Annenberg Foundation)\",\"PeriodicalId\":324509,\"journal\":{\"name\":\"Materials: Book of Abstracts\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials: Book of Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-2675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials: Book of Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨科植入物的正常功能和长期稳定性取决于骨细胞和植入物生物材料之间的密切联系,这一过程被称为骨整合。了解建立和维护功能性骨-生物材料界面的过程以及如何增强这些过程对于合理设计和优化假体装置至关重要。我们利用细胞、分子和高分辨率成像方法来分析骨-生物材料相互作用的机制基础。具体来说,我们描述了成骨细胞的初始粘附动力学以及与生物材料的表面形貌和化学的关系,特别是通常用于制造矫形假体的钴铬合金和钛合金。这些研究结果表明,成骨细胞粘附在生物材料上的长期性能至关重要地取决于初始粘附步骤的特征。此外,骨活性因子如转化生长因子-β超家族成员,包括TGF-β1和BMP-2,显著增强成骨细胞粘附。负责粘附过程的分子成分包括细胞外基质蛋白(如纤维连接蛋白和I型胶原蛋白)及其同源膜受体,即整合素。我们最近的研究表明,成骨细胞粘附也激活了特定的下游细胞内信号事件,并且这些信号事件与介导生长因子活性的信号转导机制耦合。这些事件共同调节贴壁细胞成骨表型的持续表达和维持,导致基质成熟和矿化,这是骨组织的标志。我们目前的工作重点是确定负责骨细胞在生物材料上功能的靶分子途径,并确定关键的生物和材料参数,以优化长期成骨细胞功能和与骨科相关生物材料的相互作用。从这些研究中收集的信息应该为设计最佳种植体生物材料提供合理的依据。(由美国国立卫生研究院和安嫩伯格基金会提供部分支持)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Analysis of Bone-Biomaterial Interface
Proper function and long-term stability of orthopaedic implants depend on the intimate association between bone cells and the implant biomaterial, a process known as osseointegration. Understanding the processes responsible for the establishment and maintenance of a functional bone-biomaterial interface and how these processes may be enhanced is crucial to the rational design and optimization of prosthetic devices. We have utilized cellular, molecular, and high-resolution imaging approaches to analyze the mechanistic basis of bone-biomaterial interactions. Specifically, we have characterized the initial adhesion of osteoblasts in terms of kinetics and relationship to the surface topography and chemistry of the biomaterials, particularly the cobalt-chrome and titanium alloys commonly used to fabricate orthopaedic prostheses. Results from these studies indicate that the long-term performance of osteoblasts adherent to biomaterials is crucially dependent on the characteristics of the initial adhesion step. Furthermore, osteoactive factors such as members of the transforming growth factor-β superfamily, including TGF-β1 and BMP-2, significantly enhance osteoblast cell adhesion. The molecular components responsible for the adhesion process include extracellular matrix proteins (e.g. fibronectin and collagen type I) and their cognate membrane receptors, the integrins. Our recent studies reveal that specific downstream, intracellular signaling events are also activated as a result of osteoblast adhesion, and that these signaling events are coupled to signal transduction mechanisms mediating growth factor activity. These events in combination regulate the continued expression and maintenance of the osteoblastic phenotype of the adherent cells, resulting in matrix maturation and mineralization, hallmarks of the bony tissue. Our current efforts focus on defining the target molecular pathways responsible for bone cell functioning on biomaterials, and the identification of critical biological and material parameters to optimize long-term osteoblast function and interaction with orthopaedically relevant biomaterials. The information gathered from these studies should provide a rational basis for the design of optimal implant biomaterials. (Supported in part by the NIH and the Annenberg Foundation)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信