{"title":"具有未知参数和噪声方差系统的自调谐Riccati方程的收敛性","authors":"Guili Tao, Z. Deng","doi":"10.1109/WCICA.2010.5554765","DOIUrl":null,"url":null,"abstract":"For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances\",\"authors\":\"Guili Tao, Z. Deng\",\"doi\":\"10.1109/WCICA.2010.5554765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5554765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5554765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances
For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.