具有未知参数和噪声方差系统的自调谐Riccati方程的收敛性

Guili Tao, Z. Deng
{"title":"具有未知参数和噪声方差系统的自调谐Riccati方程的收敛性","authors":"Guili Tao, Z. Deng","doi":"10.1109/WCICA.2010.5554765","DOIUrl":null,"url":null,"abstract":"For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances\",\"authors\":\"Guili Tao, Z. Deng\",\"doi\":\"10.1109/WCICA.2010.5554765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5554765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5554765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

对于模型参数和噪声方差未知的线性离散时不变随机系统,将其在线一致估计量代入稳态最优Riccati方程,得到了自整定Riccati方程。通过动态方差误差系统分析(DVESA)方法,证明了自整定Riccati方程收敛于稳态最优Riccati方程。所得结果可用于设计一种新的自调谐信息融合卡尔曼滤波器,并证明其收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances
For the linear discrete time-invariant stochastic systems with unknown model parameters and noise variances, substituting their online consistent estimators into the steady-state optimal Riccati equation, a self-tuning Riccati equation is presented. By the dynamic variance error system analysis (DVESA) method, it is proved that the self-tuning Riccati equation converges to the steady-state optimal Riccati equation. The proposed results can be applied to design a new self-tuning information fusion Kalman filter, and to prove its convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信