孔隙边界变形与Biot系数:微观力学分析

T. M. Mueller, G. Couples, P. Sahay, Jonás D. De Basabe
{"title":"孔隙边界变形与Biot系数:微观力学分析","authors":"T. M. Mueller, G. Couples, P. Sahay, Jonás D. De Basabe","doi":"10.56952/arma-2022-0692","DOIUrl":null,"url":null,"abstract":"Continuum poroelasticity theories provide a macroscopic description of fluid-saturated porous media so that pore-scale features only emerge in some averaged form.However, therein the specific signature of the underpinning micro-structure is not transparent in the constitutive material equations.For a regular lattice-type micromechanical model, we derive an exact formula for the Biot coefficient.As anticipated by experimental and numerical studies, the Biot coefficient embodies a nonlinear combination of the elasticity of the solid phase material and the geometry characterizing the pore space.This result allows us to exemplify the abstract concept of pore boundary deformation appearing in the continuum description of porous media including the ramifications of a geometrical self-similar deformation.Although this is certainly an oversimplified model for most porous rocks, our analysis may serve as benchmark for numerical upscaling based on digitized images to infer the poroelastic material parameters and thus to support ongoing experimental efforts to measure poroelasticity coefficients.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pore boundary deformation and the Biot coefficient: a micromechanical analysis\",\"authors\":\"T. M. Mueller, G. Couples, P. Sahay, Jonás D. De Basabe\",\"doi\":\"10.56952/arma-2022-0692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuum poroelasticity theories provide a macroscopic description of fluid-saturated porous media so that pore-scale features only emerge in some averaged form.However, therein the specific signature of the underpinning micro-structure is not transparent in the constitutive material equations.For a regular lattice-type micromechanical model, we derive an exact formula for the Biot coefficient.As anticipated by experimental and numerical studies, the Biot coefficient embodies a nonlinear combination of the elasticity of the solid phase material and the geometry characterizing the pore space.This result allows us to exemplify the abstract concept of pore boundary deformation appearing in the continuum description of porous media including the ramifications of a geometrical self-similar deformation.Although this is certainly an oversimplified model for most porous rocks, our analysis may serve as benchmark for numerical upscaling based on digitized images to infer the poroelastic material parameters and thus to support ongoing experimental efforts to measure poroelasticity coefficients.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连续体孔隙弹性理论提供了流体饱和多孔介质的宏观描述,因此孔隙尺度特征仅以某种平均形式出现。然而,其中支撑微观结构的具体特征在本构材料方程中并不透明。对于一个规则的点阵型细观力学模型,我们导出了一个精确的比奥系数公式。正如实验和数值研究所预测的那样,Biot系数体现了固相材料的弹性和表征孔隙空间的几何结构的非线性组合。这一结果使我们能够举例说明孔隙边界变形的抽象概念出现在多孔介质的连续描述中,包括几何自相似变形的分支。虽然对于大多数多孔岩石来说,这当然是一个过于简化的模型,但我们的分析可以作为基于数字化图像的数值升级基准,以推断孔隙弹性材料参数,从而支持正在进行的孔隙弹性系数测量的实验工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore boundary deformation and the Biot coefficient: a micromechanical analysis
Continuum poroelasticity theories provide a macroscopic description of fluid-saturated porous media so that pore-scale features only emerge in some averaged form.However, therein the specific signature of the underpinning micro-structure is not transparent in the constitutive material equations.For a regular lattice-type micromechanical model, we derive an exact formula for the Biot coefficient.As anticipated by experimental and numerical studies, the Biot coefficient embodies a nonlinear combination of the elasticity of the solid phase material and the geometry characterizing the pore space.This result allows us to exemplify the abstract concept of pore boundary deformation appearing in the continuum description of porous media including the ramifications of a geometrical self-similar deformation.Although this is certainly an oversimplified model for most porous rocks, our analysis may serve as benchmark for numerical upscaling based on digitized images to infer the poroelastic material parameters and thus to support ongoing experimental efforts to measure poroelasticity coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信