使用多层次纹理描述符的快速图像匹配

Hui-Fuang Ng, Chih-Yang Lin, Tatenda Muindisi
{"title":"使用多层次纹理描述符的快速图像匹配","authors":"Hui-Fuang Ng, Chih-Yang Lin, Tatenda Muindisi","doi":"10.1109/APSIPA.2014.7041672","DOIUrl":null,"url":null,"abstract":"At present, image and video descriptors have been widely used in many computer vision applications. In this paper, a new hierarchical multiscale texture-based image descriptor for efficient image matching is introduced. The proposed descriptor utilizes mean values at multiscale levels of an image region to convert the image region to binary bitmaps and then applies binary operations to effectively reduce the computational time and improve noise reduction to achieve stable and fast image matching. Experimental results show high performance and robustness of our proposed method over existing descriptors on image matching under variant illumination conditions and noise.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast image matching using multi-level texture descriptor\",\"authors\":\"Hui-Fuang Ng, Chih-Yang Lin, Tatenda Muindisi\",\"doi\":\"10.1109/APSIPA.2014.7041672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, image and video descriptors have been widely used in many computer vision applications. In this paper, a new hierarchical multiscale texture-based image descriptor for efficient image matching is introduced. The proposed descriptor utilizes mean values at multiscale levels of an image region to convert the image region to binary bitmaps and then applies binary operations to effectively reduce the computational time and improve noise reduction to achieve stable and fast image matching. Experimental results show high performance and robustness of our proposed method over existing descriptors on image matching under variant illumination conditions and noise.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,图像和视频描述符已广泛应用于许多计算机视觉应用中。本文提出了一种新的基于分层多尺度纹理的图像描述子,用于图像的高效匹配。该描述符利用图像区域的多尺度均值将图像区域转换为二值位图,再通过二值运算有效减少计算时间,提高降噪能力,实现稳定快速的图像匹配。实验结果表明,该方法在不同光照条件和噪声条件下的图像匹配性能优于现有描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast image matching using multi-level texture descriptor
At present, image and video descriptors have been widely used in many computer vision applications. In this paper, a new hierarchical multiscale texture-based image descriptor for efficient image matching is introduced. The proposed descriptor utilizes mean values at multiscale levels of an image region to convert the image region to binary bitmaps and then applies binary operations to effectively reduce the computational time and improve noise reduction to achieve stable and fast image matching. Experimental results show high performance and robustness of our proposed method over existing descriptors on image matching under variant illumination conditions and noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信