横向位移采用全反射光束和相移法

D. Canals‐Frau
{"title":"横向位移采用全反射光束和相移法","authors":"D. Canals‐Frau","doi":"10.1088/0335-7368/6/4/303","DOIUrl":null,"url":null,"abstract":"We show that the transverse displacement of a totally reflected light beam calculated by the phase-shift method is the projection of the longitudinal displacement on the right section of Imbert's prism; and that the phase of the reflected beam has no derivative when the incident angle is the critical angle of total reflection. Based on Ashby and Miller's (1973) work we get general expression for this displacement. We obtain non-linear terms in m (number of reflections) when the beam takes a helical path in Imbert's total reflection prism. And we discuss the conditions requiered to find Ashby and Miller's and Julia and Neveu's (1973) expressions. When the light beam remains in the right section of Imbert's isosceles prism the phase-shift calculated transverse displacement is zero whereas the energy flux conservation method and Imbert's (1970) and Levy's (1973) experiments give non-zero results.","PeriodicalId":286899,"journal":{"name":"Nouvelle Revue D'optique","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transverse displacement ol a totally reflected light beam and phase-shift method\",\"authors\":\"D. Canals‐Frau\",\"doi\":\"10.1088/0335-7368/6/4/303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the transverse displacement of a totally reflected light beam calculated by the phase-shift method is the projection of the longitudinal displacement on the right section of Imbert's prism; and that the phase of the reflected beam has no derivative when the incident angle is the critical angle of total reflection. Based on Ashby and Miller's (1973) work we get general expression for this displacement. We obtain non-linear terms in m (number of reflections) when the beam takes a helical path in Imbert's total reflection prism. And we discuss the conditions requiered to find Ashby and Miller's and Julia and Neveu's (1973) expressions. When the light beam remains in the right section of Imbert's isosceles prism the phase-shift calculated transverse displacement is zero whereas the energy flux conservation method and Imbert's (1970) and Levy's (1973) experiments give non-zero results.\",\"PeriodicalId\":286899,\"journal\":{\"name\":\"Nouvelle Revue D'optique\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nouvelle Revue D'optique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0335-7368/6/4/303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nouvelle Revue D'optique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0335-7368/6/4/303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了用相移法计算的全反射光光束的横向位移是纵向位移在Imbert棱镜右截面上的投影;当入射角为全反射的临界角时,反射光束的相位无导数。根据Ashby和Miller(1973)的工作,我们得到了位移的一般表达式。在英伯特全反射棱镜中,当光束走螺旋路径时,我们得到了m(反射数)的非线性项。我们还讨论了找到Ashby和Miller以及Julia和Neveu(1973)表达式所需的条件。当光束停留在Imbert等腰棱镜的右截面时,相移计算的横向位移为零,而能量通量守恒法和Imbert(1970)和Levy(1973)的实验给出了非零的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse displacement ol a totally reflected light beam and phase-shift method
We show that the transverse displacement of a totally reflected light beam calculated by the phase-shift method is the projection of the longitudinal displacement on the right section of Imbert's prism; and that the phase of the reflected beam has no derivative when the incident angle is the critical angle of total reflection. Based on Ashby and Miller's (1973) work we get general expression for this displacement. We obtain non-linear terms in m (number of reflections) when the beam takes a helical path in Imbert's total reflection prism. And we discuss the conditions requiered to find Ashby and Miller's and Julia and Neveu's (1973) expressions. When the light beam remains in the right section of Imbert's isosceles prism the phase-shift calculated transverse displacement is zero whereas the energy flux conservation method and Imbert's (1970) and Levy's (1973) experiments give non-zero results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信