V. Sai, Chin-Shiuh Shieh, Yuh-Chung Lin, M. Horng, Trong-The Nguyen, Quang-Duy Le, Jung-Yi Jiang
{"title":"启发式优化方法最新发展的比较研究","authors":"V. Sai, Chin-Shiuh Shieh, Yuh-Chung Lin, M. Horng, Trong-The Nguyen, Quang-Duy Le, Jung-Yi Jiang","doi":"10.1109/CMCSN.2016.29","DOIUrl":null,"url":null,"abstract":"In engineering and design problems, various noisy non-linear mathematical optimization problems can't be efficaciously solved by using conventional optimization techniques. But metaheuristic algorithms seem very efficient to approach in these problems and became very popular such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO). Recently, many new metaheuristic algorithms were proposed, but the performance of these algorithms in solving noisy non-linear optimization problems when compared with popular methods still need more of verifications. In this context, two popular algorithms called GA and PSO will be compared with some recent metaheuristic algorithms such as Grey Wolf Optimizer, Firefly Algorithm, and Brain Storm Optimization algorithm in finding optimal solutions of noisy non-linear optimization problems. The results will be compared in terms of accuracy of the best solutions found and the execution time.","PeriodicalId":153377,"journal":{"name":"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparative Study on Recent Development of Heuristic Optimization Methods\",\"authors\":\"V. Sai, Chin-Shiuh Shieh, Yuh-Chung Lin, M. Horng, Trong-The Nguyen, Quang-Duy Le, Jung-Yi Jiang\",\"doi\":\"10.1109/CMCSN.2016.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In engineering and design problems, various noisy non-linear mathematical optimization problems can't be efficaciously solved by using conventional optimization techniques. But metaheuristic algorithms seem very efficient to approach in these problems and became very popular such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO). Recently, many new metaheuristic algorithms were proposed, but the performance of these algorithms in solving noisy non-linear optimization problems when compared with popular methods still need more of verifications. In this context, two popular algorithms called GA and PSO will be compared with some recent metaheuristic algorithms such as Grey Wolf Optimizer, Firefly Algorithm, and Brain Storm Optimization algorithm in finding optimal solutions of noisy non-linear optimization problems. The results will be compared in terms of accuracy of the best solutions found and the execution time.\",\"PeriodicalId\":153377,\"journal\":{\"name\":\"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMCSN.2016.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMCSN.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study on Recent Development of Heuristic Optimization Methods
In engineering and design problems, various noisy non-linear mathematical optimization problems can't be efficaciously solved by using conventional optimization techniques. But metaheuristic algorithms seem very efficient to approach in these problems and became very popular such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO). Recently, many new metaheuristic algorithms were proposed, but the performance of these algorithms in solving noisy non-linear optimization problems when compared with popular methods still need more of verifications. In this context, two popular algorithms called GA and PSO will be compared with some recent metaheuristic algorithms such as Grey Wolf Optimizer, Firefly Algorithm, and Brain Storm Optimization algorithm in finding optimal solutions of noisy non-linear optimization problems. The results will be compared in terms of accuracy of the best solutions found and the execution time.