基于无监督图的情感分类模式提取

C. Argueta, Elvis Saravia, Yi-Shin Chen
{"title":"基于无监督图的情感分类模式提取","authors":"C. Argueta, Elvis Saravia, Yi-Shin Chen","doi":"10.1145/2808797.2809419","DOIUrl":null,"url":null,"abstract":"Traditional classifiers require extracting high dimensional feature representations, which become computationally expensive to process and can misrepresent or deteriorate the accuracy of a classifier. By utilizing a more representative list of extracted patterns, we can improve the precision and recall of a classification task. In this paper, we propose an unsupervised graph-based approach for bootstrapping Twitter-specific emotion-bearing patterns. Due to its novel bootstrapping process, the full system is also adaptable to different domains and classification problems. Furthermore, we explore how emotion-bearing patterns can help boost an emotion classification task. The experimented results demonstrate that the extracted patterns are effective in identifying emotions for English, Spanish and French Twitter streams.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unsupervised graph-based patterns extraction for emotion classification\",\"authors\":\"C. Argueta, Elvis Saravia, Yi-Shin Chen\",\"doi\":\"10.1145/2808797.2809419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional classifiers require extracting high dimensional feature representations, which become computationally expensive to process and can misrepresent or deteriorate the accuracy of a classifier. By utilizing a more representative list of extracted patterns, we can improve the precision and recall of a classification task. In this paper, we propose an unsupervised graph-based approach for bootstrapping Twitter-specific emotion-bearing patterns. Due to its novel bootstrapping process, the full system is also adaptable to different domains and classification problems. Furthermore, we explore how emotion-bearing patterns can help boost an emotion classification task. The experimented results demonstrate that the extracted patterns are effective in identifying emotions for English, Spanish and French Twitter streams.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

传统的分类器需要提取高维特征表示,这在计算上非常昂贵,并且可能会歪曲或降低分类器的准确性。通过使用更具代表性的提取模式列表,我们可以提高分类任务的精度和召回率。在本文中,我们提出了一种基于无监督图的方法来引导twitter特定的情感承载模式。由于其新颖的自举过程,整个系统也适用于不同的领域和分类问题。此外,我们探讨了情绪承载模式如何帮助提高情绪分类任务。实验结果表明,提取的模式可以有效地识别英语、西班牙语和法语Twitter流的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised graph-based patterns extraction for emotion classification
Traditional classifiers require extracting high dimensional feature representations, which become computationally expensive to process and can misrepresent or deteriorate the accuracy of a classifier. By utilizing a more representative list of extracted patterns, we can improve the precision and recall of a classification task. In this paper, we propose an unsupervised graph-based approach for bootstrapping Twitter-specific emotion-bearing patterns. Due to its novel bootstrapping process, the full system is also adaptable to different domains and classification problems. Furthermore, we explore how emotion-bearing patterns can help boost an emotion classification task. The experimented results demonstrate that the extracted patterns are effective in identifying emotions for English, Spanish and French Twitter streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信