{"title":"基于HOS和Radon变换的图像恢复","authors":"E. Sayrol, C. Nikias, T. Gasull","doi":"10.1109/HOST.1993.264593","DOIUrl":null,"url":null,"abstract":"The authors propose the use of higher-order statistics (HOS) to study the problem of image restoration. They consider images degraded by linear or zero phase blurring point spread functions (PSF) and additive Gaussian noise. The complexity associated with the combination of two-dimensional signal processing and higher-order statistics is reduced by means of the Radon transform. The projection at each angle is an one-dimensional signal that can be processed by any existing 1-D higher-order statistics-based method. They apply two methods that have proven to attain good one-dimensional signal reconstruction, especially in the presence of noise. After the ideal projections have been estimated, the inverse Radon transform gives the restored image. Simulation results are provided.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image restoration using HOS and the Radon transform\",\"authors\":\"E. Sayrol, C. Nikias, T. Gasull\",\"doi\":\"10.1109/HOST.1993.264593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose the use of higher-order statistics (HOS) to study the problem of image restoration. They consider images degraded by linear or zero phase blurring point spread functions (PSF) and additive Gaussian noise. The complexity associated with the combination of two-dimensional signal processing and higher-order statistics is reduced by means of the Radon transform. The projection at each angle is an one-dimensional signal that can be processed by any existing 1-D higher-order statistics-based method. They apply two methods that have proven to attain good one-dimensional signal reconstruction, especially in the presence of noise. After the ideal projections have been estimated, the inverse Radon transform gives the restored image. Simulation results are provided.<<ETX>>\",\"PeriodicalId\":439030,\"journal\":{\"name\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1993.264593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image restoration using HOS and the Radon transform
The authors propose the use of higher-order statistics (HOS) to study the problem of image restoration. They consider images degraded by linear or zero phase blurring point spread functions (PSF) and additive Gaussian noise. The complexity associated with the combination of two-dimensional signal processing and higher-order statistics is reduced by means of the Radon transform. The projection at each angle is an one-dimensional signal that can be processed by any existing 1-D higher-order statistics-based method. They apply two methods that have proven to attain good one-dimensional signal reconstruction, especially in the presence of noise. After the ideal projections have been estimated, the inverse Radon transform gives the restored image. Simulation results are provided.<>