基于生成对抗网络的空间成像运动去模糊

Yi Chen, Fengge Wu, Junsuo Zhao
{"title":"基于生成对抗网络的空间成像运动去模糊","authors":"Yi Chen, Fengge Wu, Junsuo Zhao","doi":"10.1109/SERA.2018.8477191","DOIUrl":null,"url":null,"abstract":"In some missions of NanoSats, we find images captured are disturbed by motion blur which caused under the situation that NanoSats work in low-earth orbit at high speeds. In this paper, we address the problem of deblurring images degraded due to space-based imaging system shaking or movements of observing targets. We propose a motion deblurring strategy via using Generative Adversarial Networks(GAN) to realize an end-to-end image processing without kernel estimation in orbit. We combine Wasserstein GAN(WGAN) and loss function based on adversarial loss and perceptual loss to optimize the result of deblurred image. The experimental results on the two different datasets prove the feasibility and effectiveness of the proposed strategy which outperforms the state-of-the-art blind deblurring algorithms using for remote sensing images both quantitatively and qualitatively.","PeriodicalId":161568,"journal":{"name":"2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion Deblurring via Using Generative Adversarial Networks for Space-Based Imaging\",\"authors\":\"Yi Chen, Fengge Wu, Junsuo Zhao\",\"doi\":\"10.1109/SERA.2018.8477191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some missions of NanoSats, we find images captured are disturbed by motion blur which caused under the situation that NanoSats work in low-earth orbit at high speeds. In this paper, we address the problem of deblurring images degraded due to space-based imaging system shaking or movements of observing targets. We propose a motion deblurring strategy via using Generative Adversarial Networks(GAN) to realize an end-to-end image processing without kernel estimation in orbit. We combine Wasserstein GAN(WGAN) and loss function based on adversarial loss and perceptual loss to optimize the result of deblurred image. The experimental results on the two different datasets prove the feasibility and effectiveness of the proposed strategy which outperforms the state-of-the-art blind deblurring algorithms using for remote sensing images both quantitatively and qualitatively.\",\"PeriodicalId\":161568,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA.2018.8477191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA.2018.8477191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在纳米卫星的一些任务中,我们发现纳米卫星在近地轨道高速运行的情况下所捕获的图像受到运动模糊的干扰。本文研究了由于天基成像系统抖动或观测目标运动而导致的图像去模糊问题。提出了一种基于生成对抗网络(GAN)的运动去模糊策略,实现了一种无需轨道核估计的端到端图像处理。我们将Wasserstein GAN(WGAN)与基于对抗损失和感知损失的损失函数相结合,对图像去模糊的结果进行优化。在两种不同数据集上的实验结果证明了该策略的可行性和有效性,在定量和定性上都优于目前最先进的遥感图像盲去模糊算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Deblurring via Using Generative Adversarial Networks for Space-Based Imaging
In some missions of NanoSats, we find images captured are disturbed by motion blur which caused under the situation that NanoSats work in low-earth orbit at high speeds. In this paper, we address the problem of deblurring images degraded due to space-based imaging system shaking or movements of observing targets. We propose a motion deblurring strategy via using Generative Adversarial Networks(GAN) to realize an end-to-end image processing without kernel estimation in orbit. We combine Wasserstein GAN(WGAN) and loss function based on adversarial loss and perceptual loss to optimize the result of deblurred image. The experimental results on the two different datasets prove the feasibility and effectiveness of the proposed strategy which outperforms the state-of-the-art blind deblurring algorithms using for remote sensing images both quantitatively and qualitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信