使用ResNet-18 CNN进行自主物联网和CPS应用的多类天气分类

Q. A. Al-Haija, M. Smadi, S. Zein-Sabatto
{"title":"使用ResNet-18 CNN进行自主物联网和CPS应用的多类天气分类","authors":"Q. A. Al-Haija, M. Smadi, S. Zein-Sabatto","doi":"10.1109/CSCI51800.2020.00293","DOIUrl":null,"url":null,"abstract":"Severe circumstances of outdoor weather might have a significant influence on the road traffic. However, the early weather condition warning and detection can provide a significant chance for correct control and survival. Therefore, the auto-recognition models of weather situations with high level of confidence are essentially needed for several autonomous IoT systems, self-driving vehicles and transport control systems. In this work, we propose an accurate and precise self-reliant framework for weather recognition using ResNet-18 convolutional neural network to provide multi-class weather classification. The proposed model employs transfer learning technique of the powerful ResNet-18 CNN pretrained on ImageNet to train and classify weather recognition images dataset into four classes including: sunrise, shine, rain, and cloudy. The simulation results showed that our proposed model achieves remarkable classification accuracy of 98.22% outperforming other compared models trained on the same dataset.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multi-Class Weather Classification Using ResNet-18 CNN for Autonomous IoT and CPS Applications\",\"authors\":\"Q. A. Al-Haija, M. Smadi, S. Zein-Sabatto\",\"doi\":\"10.1109/CSCI51800.2020.00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe circumstances of outdoor weather might have a significant influence on the road traffic. However, the early weather condition warning and detection can provide a significant chance for correct control and survival. Therefore, the auto-recognition models of weather situations with high level of confidence are essentially needed for several autonomous IoT systems, self-driving vehicles and transport control systems. In this work, we propose an accurate and precise self-reliant framework for weather recognition using ResNet-18 convolutional neural network to provide multi-class weather classification. The proposed model employs transfer learning technique of the powerful ResNet-18 CNN pretrained on ImageNet to train and classify weather recognition images dataset into four classes including: sunrise, shine, rain, and cloudy. The simulation results showed that our proposed model achieves remarkable classification accuracy of 98.22% outperforming other compared models trained on the same dataset.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

恶劣的室外天气可能会对道路交通产生重大影响。然而,早期的天气状况预警和检测可以为正确控制和生存提供重要的机会。因此,高度置信度的天气情况自动识别模型对于几个自主物联网系统、自动驾驶车辆和运输控制系统来说是必不可少的。在这项工作中,我们使用ResNet-18卷积神经网络提供多类天气分类,提出了一个准确和精确的自依赖天气识别框架。该模型采用在ImageNet上预训练的强大的ResNet-18 CNN的迁移学习技术,对天气识别图像数据集进行训练并将其分类为sunrise, shine, rain, cloudy四类。仿真结果表明,该模型的分类准确率达到了98.22%,优于在相同数据集上训练的其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Class Weather Classification Using ResNet-18 CNN for Autonomous IoT and CPS Applications
Severe circumstances of outdoor weather might have a significant influence on the road traffic. However, the early weather condition warning and detection can provide a significant chance for correct control and survival. Therefore, the auto-recognition models of weather situations with high level of confidence are essentially needed for several autonomous IoT systems, self-driving vehicles and transport control systems. In this work, we propose an accurate and precise self-reliant framework for weather recognition using ResNet-18 convolutional neural network to provide multi-class weather classification. The proposed model employs transfer learning technique of the powerful ResNet-18 CNN pretrained on ImageNet to train and classify weather recognition images dataset into four classes including: sunrise, shine, rain, and cloudy. The simulation results showed that our proposed model achieves remarkable classification accuracy of 98.22% outperforming other compared models trained on the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信