{"title":"ssd的CPR","authors":"B. Kim, Eunji Lee, Sungjin Lee, S. Min","doi":"10.1145/3317550.3321437","DOIUrl":null,"url":null,"abstract":"Modern storage systems are built upon the assumption that the capacity of a storage device does not change. This capacity-invariant interface forces a flash-based storage device to trade performance for reliability when, in fact, it can maintain both if a graceful reduction in capacity were to be allowed. We argue that relaxing the fixed capacity abstraction of the storage device allows for a better capacity-performance-reliability (CPR) tradeoff. We then outline existing device-internal mechanisms for building a capacity-variant flash device, and describe the necessary changes in the storage stack.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"79 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CPR for SSDs\",\"authors\":\"B. Kim, Eunji Lee, Sungjin Lee, S. Min\",\"doi\":\"10.1145/3317550.3321437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern storage systems are built upon the assumption that the capacity of a storage device does not change. This capacity-invariant interface forces a flash-based storage device to trade performance for reliability when, in fact, it can maintain both if a graceful reduction in capacity were to be allowed. We argue that relaxing the fixed capacity abstraction of the storage device allows for a better capacity-performance-reliability (CPR) tradeoff. We then outline existing device-internal mechanisms for building a capacity-variant flash device, and describe the necessary changes in the storage stack.\",\"PeriodicalId\":224944,\"journal\":{\"name\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"volume\":\"79 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3317550.3321437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317550.3321437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern storage systems are built upon the assumption that the capacity of a storage device does not change. This capacity-invariant interface forces a flash-based storage device to trade performance for reliability when, in fact, it can maintain both if a graceful reduction in capacity were to be allowed. We argue that relaxing the fixed capacity abstraction of the storage device allows for a better capacity-performance-reliability (CPR) tradeoff. We then outline existing device-internal mechanisms for building a capacity-variant flash device, and describe the necessary changes in the storage stack.