一种简单的递归最小二乘法求解FOC永磁同步电机驱动离线参数辨识

Ramazan Calik, Reha Ozgur Simsek, O. C. Kivanc
{"title":"一种简单的递归最小二乘法求解FOC永磁同步电机驱动离线参数辨识","authors":"Ramazan Calik, Reha Ozgur Simsek, O. C. Kivanc","doi":"10.1109/GEC55014.2022.9986582","DOIUrl":null,"url":null,"abstract":"A simple and efficient parameter identification algorithm for a permanent magnet synchronous motor (PMSM) drive system is proposed using a recursive least square (RLS) algorithm without any additional sensor. Servo motor control system requires parameter identification due to aging, parameter changes, and mechanical components for driving the reliability and performance of PMSMs. Regarding industrial applications, model-based prediction algorithms are generally expected to be developed. The most important reason is that complex mathematical operations and advanced digital filters are unsuitable for low-cost processors. In this study, all motor parameters (stator resistance, stator inductance, flux linkage, viscous friction, and inertia) are identified using the RLS method as offline. The proposed parameter estimation method for PMSM has been implemented by using the RLS algorithm. Experimental results demonstrate the feasibility and effectiveness of the proposed method.","PeriodicalId":280565,"journal":{"name":"2022 Global Energy Conference (GEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simple Recursive Least Squares Approach for Off-line Parameter Identification of FOC Permanent Magnet Synchronous Machine Drive\",\"authors\":\"Ramazan Calik, Reha Ozgur Simsek, O. C. Kivanc\",\"doi\":\"10.1109/GEC55014.2022.9986582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and efficient parameter identification algorithm for a permanent magnet synchronous motor (PMSM) drive system is proposed using a recursive least square (RLS) algorithm without any additional sensor. Servo motor control system requires parameter identification due to aging, parameter changes, and mechanical components for driving the reliability and performance of PMSMs. Regarding industrial applications, model-based prediction algorithms are generally expected to be developed. The most important reason is that complex mathematical operations and advanced digital filters are unsuitable for low-cost processors. In this study, all motor parameters (stator resistance, stator inductance, flux linkage, viscous friction, and inertia) are identified using the RLS method as offline. The proposed parameter estimation method for PMSM has been implemented by using the RLS algorithm. Experimental results demonstrate the feasibility and effectiveness of the proposed method.\",\"PeriodicalId\":280565,\"journal\":{\"name\":\"2022 Global Energy Conference (GEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Energy Conference (GEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEC55014.2022.9986582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Energy Conference (GEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEC55014.2022.9986582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种简单有效的永磁同步电机(PMSM)驱动系统参数辨识算法,该算法采用递推最小二乘(RLS)算法,无需任何附加传感器。伺服电机控制系统需要对其老化、参数变化、驱动可靠性和性能的机械部件进行参数识别。在工业应用方面,一般期望开发基于模型的预测算法。最重要的原因是复杂的数学运算和先进的数字滤波器不适合低成本的处理器。在本研究中,所有电机参数(定子电阻、定子电感、磁链、粘性摩擦和惯性)都使用RLS方法离线识别。采用RLS算法实现了所提出的永磁同步电机参数估计方法。实验结果证明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Recursive Least Squares Approach for Off-line Parameter Identification of FOC Permanent Magnet Synchronous Machine Drive
A simple and efficient parameter identification algorithm for a permanent magnet synchronous motor (PMSM) drive system is proposed using a recursive least square (RLS) algorithm without any additional sensor. Servo motor control system requires parameter identification due to aging, parameter changes, and mechanical components for driving the reliability and performance of PMSMs. Regarding industrial applications, model-based prediction algorithms are generally expected to be developed. The most important reason is that complex mathematical operations and advanced digital filters are unsuitable for low-cost processors. In this study, all motor parameters (stator resistance, stator inductance, flux linkage, viscous friction, and inertia) are identified using the RLS method as offline. The proposed parameter estimation method for PMSM has been implemented by using the RLS algorithm. Experimental results demonstrate the feasibility and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信