协同视频监控的实时目标分类与新颖性检测

C. Diehl, J. Hampshire
{"title":"协同视频监控的实时目标分类与新颖性检测","authors":"C. Diehl, J. Hampshire","doi":"10.1109/IJCNN.2002.1007557","DOIUrl":null,"url":null,"abstract":"To conduct real-time video surveillance using low-cost commercial off-the-shelf hardware, system designers typically define the classifiers prior to the deployment of the system so that the performance of the system can be optimized for a particular mission. This implies the system is restricted to interpreting activity in the environment in terms of the original context specified. Ideally the system should allow the user to provide additional context in an incremental fashion as conditions change. Given the volumes of data produced by the system, it is impractical for the user to periodically review and label a significant fraction of the available data. We explore a strategy for designing a real-time object classification process that aids the user in identifying novel, informative examples for efficient incremental learning.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Real-time object classification and novelty detection for collaborative video surveillance\",\"authors\":\"C. Diehl, J. Hampshire\",\"doi\":\"10.1109/IJCNN.2002.1007557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To conduct real-time video surveillance using low-cost commercial off-the-shelf hardware, system designers typically define the classifiers prior to the deployment of the system so that the performance of the system can be optimized for a particular mission. This implies the system is restricted to interpreting activity in the environment in terms of the original context specified. Ideally the system should allow the user to provide additional context in an incremental fashion as conditions change. Given the volumes of data produced by the system, it is impractical for the user to periodically review and label a significant fraction of the available data. We explore a strategy for designing a real-time object classification process that aids the user in identifying novel, informative examples for efficient incremental learning.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

为了使用低成本的商用现成硬件进行实时视频监控,系统设计人员通常在系统部署之前定义分类器,以便系统的性能可以针对特定任务进行优化。这意味着系统仅限于根据指定的原始上下文来解释环境中的活动。理想情况下,系统应该允许用户在条件变化时以增量方式提供额外的上下文。考虑到系统产生的数据量,用户定期审查和标记可用数据的重要部分是不切实际的。我们探索了一种设计实时对象分类过程的策略,该过程可以帮助用户识别新的、信息丰富的示例,以实现高效的增量学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time object classification and novelty detection for collaborative video surveillance
To conduct real-time video surveillance using low-cost commercial off-the-shelf hardware, system designers typically define the classifiers prior to the deployment of the system so that the performance of the system can be optimized for a particular mission. This implies the system is restricted to interpreting activity in the environment in terms of the original context specified. Ideally the system should allow the user to provide additional context in an incremental fashion as conditions change. Given the volumes of data produced by the system, it is impractical for the user to periodically review and label a significant fraction of the available data. We explore a strategy for designing a real-time object classification process that aids the user in identifying novel, informative examples for efficient incremental learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信