改进XGBDT在网络异常流量检测中的应用

Fang Binhao, Huang Hong, Zhou Ziyun
{"title":"改进XGBDT在网络异常流量检测中的应用","authors":"Fang Binhao, Huang Hong, Zhou Ziyun","doi":"10.1109/ICESIT53460.2021.9696640","DOIUrl":null,"url":null,"abstract":"Detecting abnormal traffic in real life often requires analyzing massive data (high-dimensional data) and unbalanced data. Aiming at the above problems, an intrusion detection model (SMBR-XGBDT) based on the combination of SMOTE algorithm and Boruta algorithm with Extreme Gradient Boosting (XGBoost) algorithm is proposed. The experiment selected 14367 extremely unbalanced samples based on the CIRA-CIC-DoHBrw-2020 data set, and detected 4 categories: DOH, Non-DoH, Benign-DoH, Malicious-DoH, using decision tree algorithm, random forest Algorithm, XGBoost algorithm as a control. The experimental results show that the SMBR-XGBDT model is significantly better than the other three models. The precision, recall, and F1 scores of the overall test were 93%, 93 %, and 93 %, respectively, which verified the effectiveness of the method. The precision rates of DOH, Non-DoH, Benign-DoH, Malicious-DoH were 88%, 100%, 98%, and 87%, respectively, which verified the feasibility of the method to deal with unbalanced data.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improve the Application of XGBDT in Network Abnormal Traffic Detection\",\"authors\":\"Fang Binhao, Huang Hong, Zhou Ziyun\",\"doi\":\"10.1109/ICESIT53460.2021.9696640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting abnormal traffic in real life often requires analyzing massive data (high-dimensional data) and unbalanced data. Aiming at the above problems, an intrusion detection model (SMBR-XGBDT) based on the combination of SMOTE algorithm and Boruta algorithm with Extreme Gradient Boosting (XGBoost) algorithm is proposed. The experiment selected 14367 extremely unbalanced samples based on the CIRA-CIC-DoHBrw-2020 data set, and detected 4 categories: DOH, Non-DoH, Benign-DoH, Malicious-DoH, using decision tree algorithm, random forest Algorithm, XGBoost algorithm as a control. The experimental results show that the SMBR-XGBDT model is significantly better than the other three models. The precision, recall, and F1 scores of the overall test were 93%, 93 %, and 93 %, respectively, which verified the effectiveness of the method. The precision rates of DOH, Non-DoH, Benign-DoH, Malicious-DoH were 88%, 100%, 98%, and 87%, respectively, which verified the feasibility of the method to deal with unbalanced data.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9696640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现实生活中,检测异常流量往往需要分析海量数据(高维数据)和不平衡数据。针对上述问题,提出了一种基于SMOTE算法和Boruta算法结合极端梯度增强(XGBoost)算法的入侵检测模型(SMBR-XGBDT)。实验选取基于CIRA-CIC-DoHBrw-2020数据集的14367个极度不平衡样本,采用决策树算法、随机森林算法、XGBoost算法作为对照,检测DOH、Non-DoH、benigni - DOH、Malicious-DoH 4类。实验结果表明,SMBR-XGBDT模型明显优于其他三种模型。整体测试的准确率为93%,召回率为93%,F1得分为93%,验证了方法的有效性。DOH、Non-DoH、Benign-DoH、Malicious-DoH的准确率分别为88%、100%、98%和87%,验证了该方法处理不平衡数据的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improve the Application of XGBDT in Network Abnormal Traffic Detection
Detecting abnormal traffic in real life often requires analyzing massive data (high-dimensional data) and unbalanced data. Aiming at the above problems, an intrusion detection model (SMBR-XGBDT) based on the combination of SMOTE algorithm and Boruta algorithm with Extreme Gradient Boosting (XGBoost) algorithm is proposed. The experiment selected 14367 extremely unbalanced samples based on the CIRA-CIC-DoHBrw-2020 data set, and detected 4 categories: DOH, Non-DoH, Benign-DoH, Malicious-DoH, using decision tree algorithm, random forest Algorithm, XGBoost algorithm as a control. The experimental results show that the SMBR-XGBDT model is significantly better than the other three models. The precision, recall, and F1 scores of the overall test were 93%, 93 %, and 93 %, respectively, which verified the effectiveness of the method. The precision rates of DOH, Non-DoH, Benign-DoH, Malicious-DoH were 88%, 100%, 98%, and 87%, respectively, which verified the feasibility of the method to deal with unbalanced data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信